当前位置: 首页 > news >正文

南京网站开发个人百度推广计划

南京网站开发个人,百度推广计划,企业手机网站设计,上海网站设计多少钱OpenCV DNN C 使用 YOLO 模型推理 引言 YOLO(You Only Look Once)是一种流行的目标检测算法,因其速度快和准确度高而被广泛应用。OpenCV 的 DNN(Deep Neural Networks)模块为我们提供了一个简单易用的 API&#xff0…

OpenCV DNN C++ 使用 YOLO 模型推理

引言

YOLO(You Only Look Once)是一种流行的目标检测算法,因其速度快和准确度高而被广泛应用。OpenCV 的 DNN(Deep Neural Networks)模块为我们提供了一个简单易用的 API,用于加载和运行预先训练的深度学习模型。本文将详细介绍如何使用 OpenCV 的 DNN 模块来进行 YOLOv5 的目标检测。

准备工作

确保您已经安装了 OpenCV 和 OpenCV 的 DNN 模块。如果您还没有,可以参照 OpenCV 官方文档来进行安装。

核心代码解析

结构体和类定义

struct DetectResult
{int classId;float score;cv::Rect box;
};class YOLOv5Detector
{
public:void initConfig(std::string onnxpath, int iw, int ih, float threshold);void detect(cv::Mat& frame, std::vector<DetectResult>& result);private:int input_w = 640;int input_h = 640;cv::dnn::Net net;int threshold_score = 0.25;
};

我们定义了一个名为 DetectResult 的结构体,用于存储检测结果,其中包括目标的类别 ID、得分和边界框。

YOLOv5Detector 类提供了两个主要的公共方法:

  • initConfig:用于初始化网络模型和一些参数。
  • detect:用于进行目标检测。

初始化配置

void YOLOv5Detector::initConfig(std::string onnxpath, int iw, int ih, float threshold)
{this->input_w = iw;this->input_h = ih;this->threshold_score = threshold;this->net = cv::dnn::readNetFromONNX(onnxpath);
}

initConfig 方法中,我们主要进行了以下操作:

  • 设置输入图像的宽度和高度(input_winput_h)。
  • 设置目标检测的置信度阈值(threshold_score)。
  • 通过 cv::dnn::readNetFromONNX 方法加载预训练的 ONNX 模型。

目标检测

void YOLOv5Detector::detect(cv::Mat& frame, std::vector<DetectResult>& results)
{// 图象预处理 - 格式化操作int w = frame.cols;int h = frame.rows;int _max = std::max(h, w);cv::Mat image = cv::Mat::zeros(cv::Size(_max, _max), CV_8UC3);cv::Rect roi(0, 0, w, h);frame.copyTo(image(roi));float x_factor = image.cols / 640.0f;float y_factor = image.rows / 640.0f;cv::Mat blob = cv::dnn::blobFromImage(image, 1 / 255.0, cv::Size(this->input_w, this->input_h), cv::Scalar(0, 0, 0),true, false);this->net.setInput(blob);cv::Mat preds = this->net.forward();cv::Mat det_output(preds.size[1], preds.size[2], CV_32F, preds.ptr<float>());float confidence_threshold = 0.5;std::vector<cv::Rect> boxes;std::vector<int> classIds;std::vector<float> confidences;for (int i = 0; i < det_output.rows; i++){float confidence = det_output.at<float>(i, 4);if (confidence < 0.45){continue;}cv::Mat classes_scores = det_output.row(i).colRange(5, 8);cv::Point classIdPoint;double score;minMaxLoc(classes_scores, 0, &score, 0, &classIdPoint);// 置信度 0~1之间if (score > this->threshold_score){float cx = det_output.at<float>(i, 0);float cy = det_output.at<float>(i, 1);float ow = det_output.at<float>(i, 2);float oh = det_output.at<float>(i, 3);int x = static_cast<int>((cx - 0.5 * ow) * x_factor);int y = static_cast<int>((cy - 0.5 * oh) * y_factor);int width = static_cast<int>(ow * x_factor);int height = static_cast<int>(oh * y_factor);cv::Rect box;box.x = x;box.y = y;box.width = width;box.height = height;boxes.push_back(box);classIds.push_back(classIdPoint.x);confidences.push_back(score);}}// NMSstd::vector<int> indexes;cv::dnn::NMSBoxes(boxes, confidences, 0.25, 0.45, indexes);for (size_t i = 0; i < indexes.size(); i++){DetectResult dr;int index = indexes[i];int idx = classIds[index];dr.box = boxes[index];dr.classId = idx;dr.score = confidences[index];cv::rectangle(frame, boxes[index], cv::Scalar(0, 0, 255), 2, 8);cv::rectangle(frame, cv::Point(boxes[index].tl().x, boxes[index].tl().y - 20),cv::Point(boxes[index].br().x, boxes[index].tl().y), cv::Scalar(0, 255, 255), -1);results.push_back(dr);}std::ostringstream ss;std::vector<double> layersTimings;double freq = cv::getTickFrequency() / 1000.0;double time = net.getPerfProfile(layersTimings) / freq;ss << "FPS: " << 1000 / time << " ; time : " << time << " ms";putText(frame, ss.str(), cv::Point(20, 40), cv::FONT_HERSHEY_PLAIN, 2.0, cv::Scalar(255, 0, 0), 2, 8);
}

detect 方法中,我们进行了以下几个关键步骤:

  • 对输入图像进行预处理。
  • 使用 cv::dnn::blobFromImage 函数创建一个 4 维 blob。
  • 通过 setInputforward 方法进行前向传播,得到预测结果。

然后,我们对预测结果进行解析,通过非极大值抑制(NMS)得到最终的目标检测结果。

参考资料

  • OpenCV 官方文档

完整代码

#include <fstream>
#include <iostream>
#include <string>
#include <map>
#include <opencv2/opencv.hpp>struct DetectResult
{int classId;float score;cv::Rect box;
};class YOLOv5Detector
{
public:void initConfig(std::string onnxpath, int iw, int ih, float threshold);void detect(cv::Mat& frame, std::vector<DetectResult>& result);private:int input_w = 640;int input_h = 640;cv::dnn::Net net;int threshold_score = 0.25;
};void YOLOv5Detector::initConfig(std::string onnxpath, int iw, int ih, float threshold)
{this->input_w = iw;this->input_h = ih;this->threshold_score = threshold;this->net = cv::dnn::readNetFromONNX(onnxpath);
}void YOLOv5Detector::detect(cv::Mat& frame, std::vector<DetectResult>& results)
{// 图象预处理 - 格式化操作int w = frame.cols;int h = frame.rows;int _max = std::max(h, w);cv::Mat image = cv::Mat::zeros(cv::Size(_max, _max), CV_8UC3);cv::Rect roi(0, 0, w, h);frame.copyTo(image(roi));float x_factor = image.cols / 640.0f;float y_factor = image.rows / 640.0f;cv::Mat blob = cv::dnn::blobFromImage(image, 1 / 255.0, cv::Size(this->input_w, this->input_h), cv::Scalar(0, 0, 0),true, false);this->net.setInput(blob);cv::Mat preds = this->net.forward();cv::Mat det_output(preds.size[1], preds.size[2], CV_32F, preds.ptr<float>());float confidence_threshold = 0.5;std::vector<cv::Rect> boxes;std::vector<int> classIds;std::vector<float> confidences;for (int i = 0; i < det_output.rows; i++){float confidence = det_output.at<float>(i, 4);if (confidence < 0.45){continue;}cv::Mat classes_scores = det_output.row(i).colRange(5, 8);cv::Point classIdPoint;double score;minMaxLoc(classes_scores, 0, &score, 0, &classIdPoint);// 置信度 0~1之间if (score > this->threshold_score){float cx = det_output.at<float>(i, 0);float cy = det_output.at<float>(i, 1);float ow = det_output.at<float>(i, 2);float oh = det_output.at<float>(i, 3);int x = static_cast<int>((cx - 0.5 * ow) * x_factor);int y = static_cast<int>((cy - 0.5 * oh) * y_factor);int width = static_cast<int>(ow * x_factor);int height = static_cast<int>(oh * y_factor);cv::Rect box;box.x = x;box.y = y;box.width = width;box.height = height;boxes.push_back(box);classIds.push_back(classIdPoint.x);confidences.push_back(score);}}// NMSstd::vector<int> indexes;cv::dnn::NMSBoxes(boxes, confidences, 0.25, 0.45, indexes);for (size_t i = 0; i < indexes.size(); i++){DetectResult dr;int index = indexes[i];int idx = classIds[index];dr.box = boxes[index];dr.classId = idx;dr.score = confidences[index];cv::rectangle(frame, boxes[index], cv::Scalar(0, 0, 255), 2, 8);cv::rectangle(frame, cv::Point(boxes[index].tl().x, boxes[index].tl().y - 20),cv::Point(boxes[index].br().x, boxes[index].tl().y), cv::Scalar(0, 255, 255), -1);results.push_back(dr);}std::ostringstream ss;std::vector<double> layersTimings;double freq = cv::getTickFrequency() / 1000.0;double time = net.getPerfProfile(layersTimings) / freq;ss << "FPS: " << 1000 / time << " ; time : " << time << " ms";putText(frame, ss.str(), cv::Point(20, 40), cv::FONT_HERSHEY_PLAIN, 2.0, cv::Scalar(255, 0, 0), 2, 8);
}std::map<int, std::string> classNames = {{0, "-1"}, {1, "0"}, {2, "1"}};int main(int argc, char* argv[])
{std::shared_ptr<YOLOv5Detector> detector = std::make_shared<YOLOv5Detector>();detector->initConfig(R"(D:\AllCodeProjects\best.onnx)", 640, 640, 0.25f);cv::Mat frame = cv::imread(R"(D:\0002.jpg)");std::vector<DetectResult> results;detector->detect(frame, results);for (DetectResult& dr : results){cv::Rect box = dr.box;cv::putText(frame, classNames[dr.classId], cv::Point(box.tl().x, box.tl().y - 10), cv::FONT_HERSHEY_SIMPLEX,.5, cv::Scalar(0, 0, 0));}cv::imshow("OpenCV DNN", frame);cv::waitKey();results.clear();
}
http://www.ds6.com.cn/news/23598.html

相关文章:

  • 行业网站排名百度投流运营
  • wps怎么做网页网站seo运营培训机构
  • 自建wordpress 客户端怎么优化网站排名才能起来
  • 营销类网站建设职业培训学校加盟
  • 南开网站建设营销策划思路
  • b2b网站框架灰色词优化培训
  • 阿虎手机站网站推广和seo
  • 网站正在建设中 html代码手机如何制作网站教程
  • 一步步教会你怎么做网站中国网站排名网官网
  • javaweb网站开发方法北京网站制作建设公司
  • 成都网站建设116web爱站网排名
  • 网站链接做app如何制作微信小程序店铺
  • 旅游网站功能模块软件开发需要学什么
  • 装修计划方案长沙官网seo技巧
  • 开源官网搜索引擎优化怎么做
  • 婚礼摄影网站源码免费写文案神器
  • 邯郸网站建设有哪些太原seo排名外包
  • 如何给wordpress图片切换免费培训seo
  • 德国站有哪些做站外秒杀的网站网站推广方案策划书2000
  • 网站打不开了什么原因google搜索引擎入口网址
  • 做宣传册模板的网站百度一下搜索引擎
  • WordPress连接不上FTPseo诊断分析
  • 响应式网站建设特征seo教程seo入门讲解
  • wordpress适合seo免费推广seo
  • 做快手头像的网站搜索引擎优化心得体会
  • 网站icp备案认证怎么做适合小学生摘抄的新闻2022年
  • 网站后台有显示前台没有百度seo和sem
  • 163网站视频动做正规代运营公司排名
  • 赤峰政府门户网站建设相关制度seo小白入门教学
  • 申请域名后怎么做网站宁波网络推广联系方式