当前位置: 首页 > news >正文

衢州网站设计公司排行注册推广赚钱一个80元

衢州网站设计公司排行,注册推广赚钱一个80元,网站建设基础实训报告,西安做网站电话简单思路: 当我们要从一个序列中查找一个元素的时候,最快想到的方法就是顺序查找法(即:从前到后依次查找)。但这种方法过于无脑,就是暴力的把每个元素都排查一遍。元素个数少的时候还行,一旦元…

在这里插入图片描述

简单思路:

当我们要从一个序列中查找一个元素的时候,最快想到的方法就是顺序查找法(即:从前到后依次查找)。但这种方法过于无脑,就是暴力的把每个元素都排查一遍。元素个数少的时候还行,一旦元素个数多起来,效率是非常低下,所以在实际中这种查找的方法是被摒弃的。

当题目或者实际对时间复杂度有着很高的要求的时候,这种暴力解法就显得很乏力

这里就不得不介绍一种简单且效率较高的查找方法了:二分查找法,又称折半查找法。但该方法是建立在有序的前提下的,基本思路就是:

利用两个指针left和right,不断取中点来不断把区间减小从而找到我们的答案

二分查找法的优势:

  • 二分查找法的时间复杂度:O(logN)

  • 暴力解法的时间复杂度:O(N)

如何直观来体现二分查找法时间复杂度的优势呢?

img

可以看出 二分查找 在查找数字 37 时只需3次,而 顺序查找 在查找37时需要12次。

二分查找的条件:

很多算法书都是写的具有有序性,其实更准确的是具有二段性

  • 也就是具有可以把数组分为两端的性质

二分查找有两个限制条件:

  1. 查找的数量只能是一个,不能是多个
  2. 查找的对象在逻辑上必须是有序的(这个不是必要条件,更深层次是就有二段性)

朴素二分查找:

1.left=0,right=数组最后一个位置的下标

2.取中点:mid=(right-left)/2

二分法的思想很简单,因为整个数组是有序的,数组默认是递增的。

首先选择数组中间的数字和需要查找的目标值比较

  • 如果相等最好,就可以直接返回答案了

  • 如果不相等

    如果中间的数字大于目标值,则中间数字向右的所有数字都大于目标值,全部排除

    如果中间的数字小于目标值,则中间数字向左的所有数字都小于目标值,全部排除

704. 二分查找

以此题为例:

class Solution {
public:int search(vector<int>& nums, int target) {int left=0;int right=nums.size()-1;while(left<=right){int mid=left+(right-left)/2;if(nums[mid]==target) return mid;if(nums[mid]>target) right=mid-1;if(nums[mid]<target) left=mid+1;}return -1;}
};

朴素二分查找的模版:

        while(left<=right){int mid=left+(right-left)/2;if(nums[mid]==target) return mid;if(nums[mid]>target) ...;if(nums[mid]<target) ...;}return ...;

二分查找左右端点:

我们通过一个例子:

34. 在排序数组中查找元素的第一个和最后一个位置

本题我们利用二分来解决左右端点的问题,首先left和right肯定有的

我们通过一个示例来了解本题:[1,2,3,3,3,4,5]

查找左端点:我们这里用t来代替target(这样比较好叙述)

img

  • 二分的思路操作:我们可以将上述示例分为两个部分,因为我们现在查找左端点,因此我可以将示例分为【[1,2],[3,3,3,4,5]】

img

  1. 当x<t时,处于【1,2】这个区间,left=mid+1
  2. 当x>=t时,处于【3,3,3,4,5】这个区间,right=mid(这里不能等于mid-1,因为如果mid=0,right=-1会越界)
  • 细节处理:

循环条件:

  1. left<right
  2. left<=right ×

我们选择那种呢?我们来讨论一下:

img

  1. 有结果
  2. 全大于t(t1),right一直向左走,最后right为left结束,如果是left<=right会死循环
  3. 全小于t(t2),left一直向右走,最后left在right右边结束

以此我们只能选择第一种不能选择第二种!

求中间的操作:

  1. left+(right-left)/2 ×
  2. left+(right-left+1)/2

我们考虑一下极端情况就可以知道了!当只剩下两个元素的时候:

img
第一种没有问题,第二种mid=0+2/2=1,当进行left+1操作的时候会发生越界

查找右端点

  • 二分的思路操作:我们可以将上述示例分为两个部分,因为我们现在查找左端点,因此我可以将示例分为【[1,2,3,3,3].[4,5]】

img

  1. 当x<=t时,处于【1,2,3,3,3】这个区间,left=mid
  2. 当x>t时,处于【4,5】这个区间,right=mid-1
  • 细节处理:

循环条件:

  1. left<right
  2. left<=right ×

还是选择left<right

求中间的操作:

  1. left+(right-left)/2
  2. left+(right-left+1)/2 ×

我们考虑一下极端情况就可以知道了!当只剩下两个元素的时候:

img

第一种当mid=0+1/2=0时,right=mid-1越界,第二种没有问题

class Solution {
public:vector<int> searchRange(vector<int>& nums, int target) {//特殊情况处理一下if(nums.size()==0)return {-1,-1};int left=0,right=nums.size()-1;vector<int> ret;//查找左端点while(left<right){int mid=left+(right-left)/2;if(nums[mid]<target)left=mid+1;if(nums[mid]>=target)right=mid;}//当left==right时就是结果if(nums[left]!=target)return {-1,-1};else ret.push_back(left);//查找右端点left=0,right=nums.size()-1;while(left<right){int mid=left+(right-left+1)/2;if(nums[mid]<=target)left=mid;if(nums[mid]>target)right=mid-1;}if(nums[right]!=target)return {-1,-1};else ret.push_back(right);return ret;}
};

查找区间左右端点的模版:

image-20231001143903966

模版,这里主要是取中间这里不太一样,左端点时不用+1,右端点+1(记忆当下面出现-1,上面就+1)

至于left和right可以现场推导

在这里插入图片描述

http://www.ds6.com.cn/news/22490.html

相关文章:

  • 贵州企业网站开发公司链交换
  • 企业网站运营开封网站推广
  • 建设网上商城网站兰州seo关键词优化
  • 代码做网站电脑零基础培训班
  • 有没有电商设计的网站参考自己开发网站怎么盈利
  • 潍坊信息网网站建设百度指数的作用
  • 地产平台网站模板万能搜索引擎入口
  • 广州番禺各镇分布图搜索引擎关键词优化方案
  • 什么网站可以赚钱啊个人如何在百度上做广告
  • ps做网站图安徽seo人员
  • 从化网站建设价格一媒体app软件下载老版本
  • 长春网站建设电话app推广文案
  • 专业网站设计服务最新消息今天的新闻
  • 网站建设预算学seo需要多久
  • 网站开发 招聘广州抖音seo
  • 网站页面footer的copy2024年瘟疫大爆发
  • 优化手机访问网站速度seo服务合同
  • 网站视频下载到手机怎么做个人网站制作
  • 常设中国建设工程法律论坛网站免费行情网站app大全
  • go语言做网站中国十大网站排名
  • asp电影网站源码深圳seo公司
  • wordpress模版安装宁波seo网络推广产品服务
  • 界面十分好看的网站老哥们给个关键词
  • 怎么做网站分析手机如何制作一个网页链接
  • 北京京西建设集团网站外链seo服务
  • 企业网站前台静态模板百度客服在线咨询人工服务
  • 如何在国内做网站宁波网站seo公司
  • 网站中的搜索功能怎么做的爱站关键词查询
  • 深圳企业公司做网站seo网络优化是什么意思
  • wordpress左侧nav深圳企业seo