当前位置: 首页 > news >正文

如何给公司做网站什么关键词能搜到资源

如何给公司做网站,什么关键词能搜到资源,平台设计网站公司电话,免费logo设计工具三角拓扑聚合优化器TTAO-Transformer-BiLSTM多变量回归预测(Maltab) 完整代码私信回复三角拓扑聚合优化器TTAO-Transformer-BiLSTM多变量回归预测(Maltab) 一、引言 1、研究背景和意义 在现代数据科学领域,时间序列…

三角拓扑聚合优化器TTAO-Transformer-BiLSTM多变量回归预测(Maltab)

完整代码私信回复三角拓扑聚合优化器TTAO-Transformer-BiLSTM多变量回归预测(Maltab)

一、引言

1、研究背景和意义

在现代数据科学领域,时间序列预测一直是研究的热点和难点,尤其是在金融、气象、能源等领域,精确的多变量时间序列预测对于决策支持、风险评估等具有重要意义。随着人工智能技术的发展,深度学习模型如Transformer和BiLSTM在处理序列数据方面显示出了强大的能力。Transformer模型通过自注意力机制有效地捕捉数据中的长短期依赖关系,而BiLSTM模型通过其双向的循环结构,能够更好地理解序列数据的上下文信息。然而,这些模型在训练过程中仍然面临优化难题,如梯度消失、局部最优等问题,这些问题直接影响模型的预测性能和稳定性。

2、研究现状

目前,虽然Transformer和BiLSTM模型在单一任务上的应用已较为成熟,但将两者结合用于多变量回归预测的研究仍相对较少。此外,传统的优化器如SGD、Adam等在处理复杂模型时,往往难以达到理想的优化效果。近年来,三角拓扑聚合优化器(TTAO)因其独特的拓扑结构和高效的优化能力,在多个领域展示了优越的性能。TTAO优化器通过模拟三角形拓扑结构,实现了更高效的参数更新和更稳定的训练过程,从而提高了模型的预测精度和泛化能力。

3、本文工作

针对现有研究的不足,本文提出了一种新的预测模型——TTAO-Transformer-BiLSTM。该模型结合了Transformer编码器和BiLSTM层,利用TTAO优化器进行模型训练,以达到更好的预测效果。具体而言,Transformer编码器用于捕捉数据中的长短期依赖关系,BiLSTM层用于进一步提炼时间序列的复杂特征,TTAO优化器则用于提升模型的训练效率和稳定性。通过在多个数据集上的实验验证,本文所提模型在预测精度和稳定性方面均优于传统方法。

二、数据与方法

1、数据准备

在本研究中,为了提高模型的预测性能,我们对原始数据进行了预处理,归一化处理。

2、模型构建
2.1、Transformer编码器在模型中的作用与设计

Transformer编码器通过自注意力机制,使得模型能够关注到输入序列中的所有元素,而不仅仅是前一个或后一个元素。这种机制特别适合于捕捉时间序列数据中的长短期依赖关系。在我们的模型中,Transformer编码器被设计用来处理多变量时间序列数据,通过多头的自注意力机制,模型能够从不同角度捕捉数据中的复杂关系。

2.2、BiLSTM层在捕捉时间序列依赖关系中的功能

BiLSTM层通过其双向的循环结构,能够同时利用过去和未来的上下文信息来预测当前时间步的输出。这使得BiLSTM在处理时间序列数据时具有独特的优势。在我们的模型中,BiLSTM层被添加到Transformer编码器的输出之上,以进一步提炼时间序列的复杂特征,提高模型的预测性能。

2.3、TTAO优化器的原理及其在模型优化中的优势

TTAO优化器通过模拟三角形拓扑结构,实现了更高效的参数更新和更稳定的训练过程。与传统的优化器相比,TTAO优化器在处理复杂模型时,能够更好地避免局部最优解,提高模型的泛化能力。在我们的模型中,TTAO优化器被用于训练整个TTAO-Transformer-BiLSTM模型,通过高效的参数优化,提升模型的预测精度和稳定性。

3、模型训练与验证

在模型训练过程中,我们采用了交叉验证的方法来评估模型的性能和稳定性。具体而言,我们将数据集划分为训练集、验证集和测试集,通过在训练集上训练模型,在验证集上调优超参数,最终在测试集上评估模型的预测性能。为了进一步提升模型的泛化能力,我们还采用了数据增强技术,包括随机噪声添加和时间序列窗滑动等。此外,我们还对模型的超参数进行了细致的调整,包括学习率、批次大小、正则化系数等,以达到最佳的预测效果。

三、实验结果

1、实验设置

为了全面评估TTAO-Transformer-BiLSTM模型的性能,评估指标包括均方误差(MSE)、均方根误差(RMSE)和绝对误差(MAE),这些指标能够量化模型的预测误差,从而评估模型的性能。

2、结果展示

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、结论与展望

1、研究总结

本文提出了一种新的多变量回归预测模型——TTAO-Transformer-BiLSTM,通过结合Transformer编码器、BiLSTM层和TTAO优化器,实现了高效的预测。

2、研究展望

尽管TTAO-Transformer-BiLSTM模型在多变量回归预测上取得了良好的效果,但仍有改进的空间。未来的研究可以考虑引入更多的数据增强技术,进一步提升模型的泛化能力。此外,探索更高效的优化算法和模型结构,也是未来研究的重要方向。具体而言,可以研究如何将TTAO优化器与其他先进的优化算法结合,以提高模型的训练效率和预测性能;还可以研究如何将Transformer编码器和BiLSTM层与其他先进的深度学习模型结合,以捕捉更复杂的时间序列特征。


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test  = t_test' ;%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end%%  参数设置
options = trainingOptions('adam', ...           % Adam 梯度下降算法'MaxEpochs', 100, ...                  % 最大训练次数'MiniBatchSize',64, ...                %批大小,每次调整参数前所选取的样本数量'InitialLearnRate', Positions(1), ...  % 初始学习率 best_lr'LearnRateSchedule', 'piecewise', ...  % 学习率下降'LearnRateDropFactor', 0.5, ...        % 学习率下降因子'LearnRateDropPeriod', 50, ...         % 经过训练后 学习率'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集'ValidationPatience', Inf, ...         % 关闭验证'L2Regularization', Positions(3), ...  % 正则化参数'Verbose', false);%%  模型训练
net = trainNetwork(p_train, t_train, lgraph, options);%%  仿真预测
t_sim = predict(net, p_train);%%  计算适应度
fitness = sqrt(sum((t_sim - t_train).^2) ./ length(t_sim));end
http://www.ds6.com.cn/news/22370.html

相关文章:

  • 黄山网站建设方案中国今天刚刚发生的新闻
  • 小说网站编辑怎么做链接买卖
  • 电子商务网站开发设计网站编辑
  • 做企业网站进行推广要多少钱互联网平台推广是什么意思
  • 上海建筑建材业网官网爱站seo工具包官网
  • 男女直接做视频网站seopeixun com cn
  • 做网站开发用sublime好吗平面设计主要做什么
  • 深圳创意网站设计青岛做网站推广公司
  • ps个人网站怎么做怎么做神马搜索排名seo
  • b2c的网站名称有哪些百度做广告费用
  • 网站建设得要素seo公司北京
  • 上海网站建设 建站猫重庆电子商务seo
  • 关于网站备案的公告除了百度指数还有哪些指数
  • 关于做网站的文献综述国际婚恋网站排名
  • 有没有代做毕业设计的网站win7最好的优化软件
  • 商城网站 不易优化seo是什么的简称
  • 电商网站安全解决方案上海专业seo公司
  • 做外贸soho 需要有网站吗google seo实战教程
  • 做网站不挣钱百度竞价排名软件
  • 首都在线官网网站seo排名优化培训价格
  • 网站建设代理政策市场营销产品推广策划方案
  • 阿里企业邮箱个人登录网站seo优化技能
  • 合肥网站建设网站推广google推广专员招聘
  • 亚购物车功能网站怎么做的全网推广系统
  • 便宜网站制作公司互联网推广项目
  • 苏州网站建设2万起2023第二波疫情已经到来了
  • 电商网站开发框架女装标题优化关键词
  • 建设项目招标在什么网站公示怎么制作百度网页
  • 微信开发者平台登录路由优化大师官网
  • 怎么才能创建个人网站电商营销推广方法