当前位置: 首页 > news >正文

为什么自己花钱做的网站竟然不是自己的 (谷歌官网入口

为什么自己花钱做的网站竟然不是自己的 (,谷歌官网入口,wordpress 旧文章 最新,金华哪里有做网站的公司4000-262-前言 上一章我们介绍的通过迁移学习,在新的行人数据集上使用已经学习到的特征和权重,从而更快地实现行人检测任务。模型就会调整其参数以适应新的数据集,以提高对行人的识别性能。接下来介绍一种更快更便捷的方法,依旧是基于yolo…

前言

上一章我们介绍的通过迁移学习,在新的行人数据集上使用已经学习到的特征和权重,从而更快地实现行人检测任务。模型就会调整其参数以适应新的数据集,以提高对行人的识别性能。接下来介绍一种更快更便捷的方法,依旧是基于yolov8。

标签过滤方法

在这种方法中,不对模型进行重新训练,而是在模型输出的基础上,通过筛选、过滤标签来达到特定的识别目标。以下详细介绍这种方法:
1.模型输出: 首先使用一个预训练好的目标检测模型来对图像进行检测。在这里插入图片描述
这些模型已经在大型数据集上进行了训练,学习到了各种不同类别的目标的特征。

2.目标标签过滤: 接下来,从模型的输出结果中提取目标的标签信息。这些标签通常包含了检测到的目标类别(如人、车、狗等)、位置(边界框坐标)、置信度分数等信息。

3.选择感兴趣的类别: 在标签过滤的过程中,根据任务需求选择感兴趣的目标类别。例如,只对行人感兴趣,您可以只保留标签为“行人”的目标检测结果,而过滤掉其他类别的目标。

4.阈值处理: 除了选择感兴趣的类别外,还可以根据置信度分数来进行阈值处理。通常情况下,模型会为每个检测到的目标分配一个置信度分数,表示该目标存在的概率。您可以根据设定的阈值来过滤掉低置信度的检测结果,以确保只保留可信度较高的目标。

5.结果可视化或保存: 最后,将经过标签过滤处理后的目标检测结果进行可视化或保存。通常,可以将过滤后的结果在图像或视频中标注出来,以便后续分析或应用。

完整的demo

只需要运行这段推理脚本即可。

import cv2
from ultralytics import YOLO
# 加载YOLOv8模型
model = YOLO('yolov8n.pt')  # 你可以选择其他模型,例如yolov8s.pt, yolov8m.pt等
image_path = 'test-img/ms.jpg'  # 替换为你的图像路径
image = cv2.imread(image_path)
# 使用模型进行检测
results = model(image)
# 筛选出标签为"person"的检测结果(COCO数据集中,类别0通常为'person')
person_results = [result for result in results[0].boxes if result.cls[0] == 0]
# 绘制检测到的"person"的边界框
for box in person_results:x1, y1, x2, y2 = map(int, box.xyxy[0])confidence = box.conf[0]label = f"person {confidence:.2f}"cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 3)cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 4)
# 保存结果图像
output_path_person_only = 'person_only_detected_image1.jpg'
cv2.imwrite(output_path_person_only, image)
print(f"检测结果已保存到 {output_path_person_only}")

原始检测结果

在这里插入图片描述

标签过滤后的检测结果

在这里插入图片描述

两种方法的区别

迁移学习优缺点:

优点:

  • 目标定制化: 重新训练模型可以针对特定的任务和数据集进行优化,可以更好地满足特定需求,提高模型性能和准确性。
  • 灵活性: 可以调整模型架构、超参数和训练策略,以适应不同的数据特征和应用场景,具有更大的灵活性。
  • 更适应新任务: 重新训练模型可以使其更适应新的目标类别、背景和环境变化,提高泛化能力和适应性。

缺点:

  • 时间和资源消耗: 需要花费大量时间和计算资源来重新训练模型,特别是对于大型数据集和复杂模型而言。
  • 数据标注需求: 需要大量标注好的数据集来进行重新训练,标注过程可能耗时耗力。
  • 潜在过拟合: 重新训练模型可能会导致过度拟合于新数据集,特别是当新数据集相对较小或与原始数据集有显著差异时

过滤标签的优缺点:

优点:

  • 简单快速: 只需要对已有模型的输出进行简单的标签过滤,不需要重新训练模型,过程简单快速。
  • 资源消耗低: 不需要重新分配大量的计算资源和时间,适用于资源有限或时间紧迫的情况。
  • 保留原模型特性: 可以保留原始模型在大型数据集上学到的丰富特征和知识,避免了重新训练可能带来的性能下降。

缺点:

  • 限制性: 受限于原始模型在预训练数据集上学习到的特征和知识,可能无法很好地适应新任务和数据集,性能可能受限。
  • 无法完全定制化: 无法对模型架构和参数进行定制化调整,可能无法满足特定需求。
  • 可能导致误差传播: 对于一些复杂的数据集和场景,简单的标签过滤可能会导致误差传播,影响最终的检测性能。

总结

没有最好的方法,只有最合适的方法。

http://www.ds6.com.cn/news/20723.html

相关文章:

  • 做网站都不赚钱了吗seo薪资seo
  • 去哪个网站有客户找做标书的广告推广公司
  • 张家港网站关键词优化网络推广平台网站推广
  • 零基础学软件开发需要多久seo网上培训
  • 长春餐饮网站建设竞价外包推广专业公司
  • wordpress用cdn文章无法更新排名优化培训
  • 深圳做网站公武汉企业seo推广
  • wordpress多账号百度网站怎样优化排名
  • 照明灯具类企业网站软考培训机构哪家好一点
  • 网站建设一般用英文怎么说seo搜索优化是什么意思
  • 著名设计案例网站自己建网站详细流程
  • 深圳大型网站设计公司百度销售平台
  • 郑州金水区网站建设竞价sem托管公司
  • 房产中介做租单用哪个付费网站更好宁波seo外包推广公司
  • 唐山网站建设正规公司高级搜索引擎
  • 手游排行榜前十名网络游戏深圳百度seo哪家好
  • 深圳好的网站建设公司哪家好百度竞价推广账户
  • 响水做网站哪家好网络营销的新特点
  • 招聘网站套餐费用怎么做分录苏州网站建设
  • 合肥专业的房产网站建设深圳网站提升排名
  • 给公众号做头像的网站网络上市场推广
  • wordpress站点收录好网站seo查询
  • 吉林省高等级公路建设局 网站河北关键词seo排名
  • 网站建设协议 模板下载关键词搜索查找工具
  • 天津市做网站公司电子商务主要学什么内容
  • 简单网站的设计与制作怎么样引流顾客到店方法
  • SEO参与网站建设注意购买seo关键词排名优化官网
  • 广州营销型网站建设公司哪家名气大查询网站服务器
  • 新疆通汇建设集团有限公司网站可视化网页制作工具
  • 主要的网站开发技术路线网站代理公司