当前位置: 首页 > news >正文

https网站制作应用商店关键词优化

https网站制作,应用商店关键词优化,动画视频模板网站,b2b游戏网站建设前言 在《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章中,我们阐述了Legendre多项式在 [ − 1 , 1 ] [-1,1] [−1,1]上的根分布情况并给出了证明。本文将证明Legendre多项式在 [ − 1 , 1 ] [-1,1] [−1,1]上的正交性质。 正交多项式的定义…

前言

在《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章中,我们阐述了Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的根分布情况并给出了证明。本文将证明Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的正交性质。

正交多项式的定义

f n ( x ) , n ∈ N f_n(x),n\in \mathbb N fn(x),nN是定义在 [ a , b ] [a,b] [a,b]上的一列函数,若对于任意的自然数 m , n m,n m,n f m ( x ) f n ( x ) f_m(x)f_n(x) fm(x)fn(x) [ a , b ] [a,b] [a,b]上可积,且满足:
∫ a b f m ( x ) f n ( x ) d x = { 0 , m ≠ n ∫ a b f n 2 ( x ) d x > 0 , m = n \int_{a}^{b}f_m(x)f_n(x) \mathrm{d}x=\begin{cases}0, &m\neq n \\\displaystyle \int_{a}^{b} f^2_n(x)\mathrm{d}x>0, &m=n\end{cases} abfm(x)fn(x)dx= 0,abfn2(x)dx>0,m=nm=n
则称 { f n ( x ) } \{f_n(x)\} {fn(x)} [ a , b ] [a,b] [a,b]上的正交函数列。当 { f n ( x ) } \{f_n(x)\} {fn(x)} n n n次多项式时,则称 { f n ( x ) } \{f_n(x)\} {fn(x)} [ a , b ] [a,b] [a,b]上的正交多项式列

n阶Legendre多项式在 [ − 1 , 1 ] [-1,1] [1,1]上的正交性证明

n次Legendre多项式的定义如下:
p n ( x ) = 1 2 n n ! d n d x n ( x 2 − 1 ) n , n ∈ N p_{n}(x)=\frac{1}{2^n n!}\frac{\mathrm d^n}{\mathrm{d} x^n}(x^2-1)^n, n\in \mathbb{N} pn(x)=2nn!1dxndn(x21)n,nN

不妨设 n ≥ m n \geq m nm。首先构造如下函数

I m n = m ! n ! 2 m 2 n ∫ − 1 1 p m ( x ) p n ( x ) d x = ∫ − 1 1 d m d x m ( x 2 − 1 ) m ⋅ d n d x n ( x 2 − 1 ) n d x \begin{equation} I_{mn}=m!n!2^m2^n\int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =\int_{-1}^{1}\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^n}{\mathrm{d} x^n}(x^2-1)^n \mathrm{d}x \end{equation} Imn=m!n!2m2n11pm(x)pn(x)dx=11dxmdm(x21)mdxndn(x21)ndx

用分部积分法对 ( 1 ) (1) (1)式进行积分,可以得到

I m n = ∫ − 1 1 d m d x m ( x 2 − 1 ) m d ( d n − 1 d x n − 1 ( x 2 − 1 ) n ) = d m d x m ( x 2 − 1 ) m ⋅ d n − 1 d x n − 1 ( x 2 − 1 ) n ∣ − 1 1 − ∫ − 1 1 d n − 1 d x n − 1 ( x 2 − 1 ) n ⋅ d m + 1 d x m + 1 ( x 2 − 1 ) m d x \begin{equation} \begin{align} I_{mn} &=\int_{-1}^{1}\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \mathrm{d}(\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n) \nonumber \\ &=\left.\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \right |_{-1}^{1} \nonumber -\int_{-1}^{1}\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \cdot \frac{\mathrm d^{m+1}}{\mathrm{d} x^{m+1}}(x^2-1)^m\mathrm{d}x \nonumber \\ \end{align} \end{equation} Imn=11dxmdm(x21)md(dxn1dn1(x21)n)=dxmdm(x21)mdxn1dn1(x21)n 1111dxn1dn1(x21)ndxm+1dm+1(x21)mdx

这里引用《n次Legendre(勒让德)多项式在区间(-1, 1)上根的分布及证明》这篇文章里的结论:

k < n k<n k<n时, f k ( x ) = [ ( x 2 − 1 ) n ] ( k ) f_{k}(x)=[(x^2-1)^n]^{(k)} fk(x)=[(x21)n](k)的每一项都包含因式 x − 1 x-1 x1 x + 1 x+1 x+1

因此 d m d x m ( x 2 − 1 ) m ⋅ d n − 1 d x n − 1 ( x 2 − 1 ) n ∣ − 1 1 = 0 \displaystyle \left.\frac{\mathrm d^m}{\mathrm{d} x^m}(x^2-1)^m \cdot \frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \right |_{-1}^{1}=0 dxmdm(x21)mdxn1dn1(x21)n 11=0。于是 ( 2 ) (2) (2)式可以写成:

I m n = − ∫ − 1 1 d n − 1 d x n − 1 ( x 2 − 1 ) n ⋅ d m + 1 d x m + 1 ( x 2 − 1 ) m d x \begin{equation} I_{mn}=-\int_{-1}^{1}\frac{\mathrm d^{n-1}}{\mathrm{d} x^{n-1}}(x^2-1)^n \cdot \frac{\mathrm d^{m+1}}{\mathrm{d} x^{m+1}}(x^2-1)^m\mathrm{d}x \end{equation} Imn=11dxn1dn1(x21)ndxm+1dm+1(x21)mdx

继续用分部积分法对 ( 3 ) (3) (3)式重复上述过程,执行 n n n次后,得到

I m n = ( − 1 ) n ∫ − 1 1 d m + n d x m + n ( x 2 − 1 ) m ⋅ ( x 2 − 1 ) n d x \begin{equation} I_{mn}=(-1)^n\int_{-1}^{1} \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m \cdot (x^2-1)^n \mathrm{d}x \end{equation} Imn=(1)n11dxm+ndm+n(x21)m(x21)ndx

下面分情况讨论。

  1. n > m n>m n>m d m + n d x m + n ( x 2 − 1 ) m = 0 \displaystyle \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m =0 dxm+ndm+n(x21)m=0,即 I m n = 0 I_{mn}=0 Imn=0,因此有

∫ − 1 1 p m ( x ) p n ( x ) d x = 0 \begin{equation} \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =0 \end{equation} 11pm(x)pn(x)dx=0

  1. n = m n=m n=m,根据高阶导数的Leibniz公式可以得到:
    d m + n d x m + n ( x 2 − 1 ) m = ∑ i = 0 2 n C 2 n i [ ( x + 1 ) n ] ( i ) [ ( x − 1 ) n ] ( 2 n − i ) = C 2 n n [ ( x + 1 ) n ] ( n ) [ ( x − 1 ) n ] ( n ) = ( 2 n ) ! \begin{equation} \displaystyle \frac{\mathrm d^{m+n}}{\mathrm{d} x^{m+n}}(x^2-1)^m =\displaystyle \sum_{i=0}^{2n} C_{2n}^{i}[(x+1)^n]^{(i)}[(x-1)^n]^{(2n-i)}=C_{2n}^{n}[(x+1)^n]^{(n)}[(x-1)^n]^{(n)}=(2n)! \end{equation} dxm+ndm+n(x21)m=i=02nC2ni[(x+1)n](i)[(x1)n](2ni)=C2nn[(x+1)n](n)[(x1)n](n)=(2n)!

( 6 ) (6) (6)式代入 ( 4 ) (4) (4)式,不断使用分部积分法后可以得到

I n n = ( 2 n ) ! ( − 1 ) n ∫ − 1 1 ( x − 1 ) n ( x + 1 ) n d x = ( 2 n ) ! ∫ − 1 1 ( 1 − x ) n d ( ( 1 + x ) n + 1 n + 1 ) = ( 2 n ) ! n + 1 ( 1 − x ) n ( 1 + x ) n + 1 ∣ − 1 1 + ( 2 n ) ! n n + 1 ∫ − 1 1 ( 1 − x ) n − 1 ( 1 + x ) n + 1 d x = ( 2 n ) ! n n + 1 ∫ − 1 1 ( 1 − x ) n − 1 ( 1 + x ) n + 1 d x = ( 2 n ) ! n ( n − 1 ) ( n + 1 ) ( n + 2 ) ∫ − 1 1 ( 1 − x ) n − 2 ( 1 + x ) n + 2 d x = . . . = ( n ! ) 2 ∫ − 1 1 ( 1 + x ) 2 n d x = ( n ! ) 2 2 2 n + 1 2 n + 1 \begin{equation} \begin{align} I_{nn} &= (2n)!(-1)^n\int_{-1}^{1} (x-1)^n (x+1)^n \mathrm{d}x \nonumber \\ &=(2n)!\int_{-1}^{1}(1-x)^n \mathrm{d}\left(\dfrac{(1+x)^{n+1}} {n+1}\right)\nonumber \\ &=\left.\dfrac{(2n)!}{n+1}(1-x)^n(1+x)^{n+1}\right|_{-1}^{1}+\dfrac{(2n)!n}{n+1}\int_{-1}^{1}(1-x)^{n-1}(1+x)^{n+1}\mathrm{d}x \nonumber \\ &=\dfrac{(2n)!n}{n+1}\int_{-1}^{1}(1-x)^{n-1}(1+x)^{n+1}\mathrm{d}x \nonumber \\ &=\dfrac{(2n)!n(n-1)}{(n+1)(n+2)}\int_{-1}^{1}(1-x)^{n-2}(1+x)^{n+2}\mathrm{d}x \nonumber \\ &=... \nonumber \\ &=(n!)^2\int_{-1}^{1}(1+x)^{2n}\mathrm{d}x =\dfrac{(n!)^2 2^{2n+1}}{2n+1}\nonumber \\ \end{align} \end{equation} Inn=(2n)!(1)n11(x1)n(x+1)ndx=(2n)!11(1x)nd(n+1(1+x)n+1)=n+1(2n)!(1x)n(1+x)n+1 11+n+1(2n)!n11(1x)n1(1+x)n+1dx=n+1(2n)!n11(1x)n1(1+x)n+1dx=(n+1)(n+2)(2n)!n(n1)11(1x)n2(1+x)n+2dx=...=(n!)211(1+x)2ndx=2n+1(n!)222n+1

( 7 ) (7) (7)式代入 ( 1 ) (1) (1)式,可得

∫ − 1 1 p m ( x ) p n ( x ) d x = I n n ( n ! ) 2 2 n = 2 2 n + 1 > 0 \begin{equation} \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x =\dfrac{I_{nn}}{(n!)2^{2n}}=\dfrac{2}{2n+1}>0 \end{equation} 11pm(x)pn(x)dx=(n!)22nInn=2n+12>0

结合 ( 5 ) , ( 8 ) (5),(8) (5),(8)式,我们得到了如下结论

∫ − 1 1 p m ( x ) p n ( x ) d x = { 0 , m ≠ n 2 2 n + 1 > 0 , m = n \int_{-1}^{1}p_{m}(x)p_{n}(x) \mathrm{d}x=\begin{cases}0, &m\neq n \\\displaystyle\dfrac{2}{2n+1}>0, &m=n\end{cases} 11pm(x)pn(x)dx= 0,2n+12>0,m=nm=n

根据定义,我们得到 n n n次Legendre多项式列 { p n ( x ) } \{p_n(x)\} {pn(x)} [ − 1 , 1 ] [-1,1] [1,1]上的正交多项式列。证毕。

http://www.ds6.com.cn/news/118537.html

相关文章:

  • 怎样制作单页网站全网推广代理
  • 网站建设服务子域名在线查询
  • wordpress 网页目录下外贸网站建设优化推广
  • 图书馆网站建设公司如何建立一个网站平台
  • 专注做动漫的门户网站360营销
  • 江西医院网站建设抖音关键词排名推广
  • 长沙公司网站设计报价it培训学校
  • 上海招聘网站建设佛山网站建设十年乐云seo
  • 嘉兴企业网站建设系统人民日报今天新闻
  • 深圳公明网站建设公司广州seo优化效果
  • 天津做网站认准津坤科技注册域名后如何建立网站
  • 推广工具新区seo整站优化公司
  • 洛阳新光建站百度人工优化
  • 武汉网站开发首选千捷科技故事式软文范例500字
  • 支付功能网站建设刷关键词要刷大词吗
  • 如何做视频会员网站网络推广公司口碑
  • 网站首页排名下降seo编辑培训
  • 网站开发网站定制灰色关键词排名代发
  • 长沙网站推广公司爱站网影院
  • 做网页链接网站百度关键词seo优化
  • 织梦做旅游网站化工网站关键词优化
  • 做网站 sql 用哪种百度快照关键词推广
  • 我的世界大盒子怎么做视频网站seo搜索引擎优化公司
  • 合肥网站建设合肥网站制作四川最好的网络优化公司
  • 网站建设项目国内外分析报告网站seo是啥
  • 做网站需要几步石家庄seo外包公司
  • 树状结构的网站网站快速推广
  • 广州思盾互动网站建设公司世界足球排名前100名
  • 网站建设公司专业公司哪家好外贸网站谷歌seo
  • 官方网站免费建设企业宣传软文