当前位置: 首页 > news >正文

网站建设结构每日新闻摘抄10一30字

网站建设结构,每日新闻摘抄10一30字,秦皇岛网站建设哪里有,中国住房和城乡建设部网站首页目录1. 聚类原理1.1. 无监督与聚类1.2. K均值算法2. 公式推导2.1. 距离2.2. 最小平方误差3. 实例3.1. python实现3.2. sklearn实现4. 运行(可直接食用)1. 聚类原理 1.1. 无监督与聚类 在这部分我今天主要介绍K均值聚类算法,在这之前我想提一…

在这里插入图片描述

目录

  • 1. 聚类原理
    • 1.1. 无监督与聚类
    • 1.2. K均值算法
  • 2. 公式推导
    • 2.1. 距离
    • 2.2. 最小平方误差
  • 3. 实例
    • 3.1. python实现
    • 3.2. sklearn实现
  • 4. 运行(可直接食用)

1. 聚类原理

1.1. 无监督与聚类

在这部分我今天主要介绍K均值聚类算法,在这之前我想提一下“无监督学习”和“聚类”。

无监督学习是指训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质和规律的学习。

在 sklearn 官网首页中,非常贴心的将任务分为了分类,回归,聚类三类,以此我们可以看出聚类的重要性。实际上聚类就是把训练集中的样本划分为通常不相交的几个子集,每个子集称为一个簇,每个簇对应的名字聚类事先是不知道的,需要靠使用者来把握命名。

优点

简单有效

缺点

对于K均值算法来说,最明显的缺点有很多:一开始定中心点数量需要人为定;中心点选取初始样本是随机选的。很多K均值优化算法都是从这几个方面入手改进的。

1.2. K均值算法

对于K均值算法,西瓜书的伪代码其实已经说的很明白了:
在这里插入图片描述
简单的说就是三步:

  1. 选择初始中心点,最基本的方法是从数据集中选择样本。初始化后,K-means由其他两个步骤之间的循环组成。
  2. 将每个样本指定给其最近的中心。
  3. 通过获取分配给每个先前中心的所有样本的平均值来创建新的中心。计算新旧质心之间的差值,算法重复最后两个步骤,直到该值小于阈值。

一般来说,中心点不会是已经存在的点,一般都是算出来的虚构的点。

提一下 对于高维数据,我们知道存在维度诅咒这一说法,所以在很多时候聚类往往会跟PCA之类的降维算法搭配。在降维算法中 TSNE 因为能将数据降维至2-3维,非常适合可视化,而且降维效率也高,所以也很常用。

2. 公式推导

2.1. 距离

简单的说,对于每个簇来说,簇内相似度高,簇外相似度低(高内距,低耦合)。那么衡量距离的方法有哪些?

  • 曼哈顿距离
  • 欧式距离
  • 闵可夫斯基距离 distmk(xi,xj)=(∑u=1n∣xiu−xju∣p)1pdist_mk(x_i,x_j)=(\sum_{u=1}^n|{x_{iu}-x_{ju}|^p})^{\frac{1}{p}}distmk(xi,xj)=(u=1nxiuxjup)p1
  • 余弦相似度 cos(θ)=∑i=1n(xi×yi)∑i=1n(xi)2×∑i=1n(yi)2cos(\theta)=\frac{\sum_{i=1}^n(x_i\times y_i)}{\sqrt{\sum^n_{i=1}{(x_i)^2}} \times \sqrt{\sum^n_{i=1}{(y_i)^2}}}cos(θ)=i=1n(xi)2×i=1n(yi)2i=1n(xi×yi)
  • 等等

注:p=1,闵可夫斯基距离为曼哈顿距离;p=2,闵可夫斯基距离为欧氏距离。

2.2. 最小平方误差

说白了就是每个簇内每个点到中心点的距离的和最小。

E=∑i=1k∑x∈Ci∣∣x−μi∣∣22E = \sum^k_{i=1}{\sum_{x\in C_i}{||x-\mu_i||_2^2}} E=i=1kxCi∣∣xμi22
μi\mu_iμi就是中心点,数学公式表示就是
μi=1∣Ci∣∑x∈Cix\mu_i=\frac{1}{|C_i|}\sum_{x\in C_i}{x} μi=Ci1xCix

3. 实例

西瓜数据集4.0为例

密度,含糖率
0.697,0.46
0.774,0.376
0.634,0.264
0.608,0.318
0.556,0.215
0.403,0.237
0.481,0.149
0.437,0.211
0.666,0.091
0.243,0.267
0.245,0.057
0.343,0.099
0.639,0.161
0.657,0.198
0.36,0.37
0.593,0.042
0.719,0.103
0.359,0.188
0.339,0.241
0.282,0.257
0.748,0.232
0.714,0.346
0.483,0.312
0.478,0.437
0.525,0.369
0.751,0.489
0.532,0.472
0.473,0.376
0.725,0.445
0.446,0.459

3.1. python实现

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

def mykmeans(data, k):# 计算距离def get_dis(data, center, k):ret = []for point in data:# np.tile(a, (2, 1))就是把a先沿x轴复制1倍,即没有复制,仍然是[0, 1, 2]。 再把结果沿y方向复制2倍得到array([[0, 1, 2], [0, 1, 2]])# k个中心点,所以有k行diff = np.tile(point, (k, 1)) - centersquaredDiff = diff ** 2  # 平方squaredDist = np.sum(squaredDiff, axis=1)  # 和  (axis=1表示行)distance = squaredDist ** 0.5  # 开根号ret.append(distance)return np.array(ret)def draw(data, cluster):D_data = pd.DataFrame(data)plt.rcParams["font.size"] = 14colors = np.array(["red", "gray", "orange", "pink", "blue", "green"])D_data["cluster"] = clusterD_data = D_data.sort_values(by="cluster")xx = np.array(D_data[D_data.columns[0]])  # 取前两个维度可视化yy = np.array(D_data[D_data.columns[1]])cc = np.array(D_data["cluster"])plt.scatter(xx, yy, c=colors[cc])  # c=colors[cc]plt.show()plt.close()# 计算质心def classify(data, center, k):# 计算样本到质心的距离clalist = get_dis(data, center, k)# 分组并计算新的质心minDistIndices = np.argmin(clalist, axis=1)  # axis=1 表示求出每行的最小值的下标newCenter = pd.DataFrame(data).groupby(minDistIndices).mean()  # DataFramte(dataSet)对DataSet分组,groupby(min)按照min进行统计分类,mean()对分类结果求均值newCenter = newCenter.values# 计算变化量changed = newCenter - centerreturn changed, newCenterdata = data.tolist()# 随机取质心centers = random.sample(data, k)# 更新质心 直到变化量全为0changed, newCenters = classify(data, centers, k)while np.any(changed != 0):changed, newCenters = classify(data, newCenters, k)centers = sorted(newCenters.tolist())  # tolist()将矩阵转换成列表 sorted()排序# 根据质心计算每个集群cluster = []clalist = get_dis(data, centers, k)  # 调用欧拉距离minDistIndices = np.argmin(clalist, axis=1)print(minDistIndices)for i in range(k):cluster.append([])for i, j in enumerate(minDistIndices):  # enymerate()可同时遍历索引和遍历元素cluster[j].append(data[i])draw(data, minDistIndices)

3.2. sklearn实现

在这里插入图片描述
在这里插入图片描述

def sk(data, k):# # 肘部法取k值# data = np.array(data)# SSE = []# right = min(7, data.shape[0])# for k in range(2, right):#     km = KMeans(n_clusters=k)#     km.fit(data)#     SSE.append(km.inertia_)# xx = range(2, right)# plt.xlabel("k")# plt.ylabel("SSE")# plt.plot(xx, SSE, "o-")# plt.show()D_data = pd.DataFrame(data)km = KMeans(n_clusters=k).fit(data)# print(km.labels_)print("质心")center = km.cluster_centers_print(center)D_data["cluster"] = km.labels_plt.rcParams["font.size"] = 14colors = np.array(["red", "gray", "orange", "pink", "blue", "green"])D_data["cluster"] = km.labels_D_data = D_data.sort_values(by="cluster")xx = np.array(D_data[D_data.columns[0]])  # 取前两个维度可视化yy = np.array(D_data[D_data.columns[1]])cc = np.array(D_data["cluster"])plt.scatter(xx, yy, c=colors[cc])  # c=colors[cc]if D_data.shape[0] >= 1:plt.scatter(center[:, 0], center[:, 1], marker="o", s=15, c="black")  # 画中心点plt.show()plt.close()

4. 运行(可直接食用)

import random
from collections import Counter
import numpy as np
import pandas as pd
import warnings
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans
from sklearn.manifold import TSNEwarnings.filterwarnings("ignore")def sk(data, k):# # 肘部法取k值# data = np.array(data)# SSE = []# right = min(7, data.shape[0])# for k in range(2, right):#     km = KMeans(n_clusters=k)#     km.fit(data)#     SSE.append(km.inertia_)# xx = range(2, right)# plt.xlabel("k")# plt.ylabel("SSE")# plt.plot(xx, SSE, "o-")# plt.show()D_data = pd.DataFrame(data)km = KMeans(n_clusters=k).fit(data)# print(km.labels_)print("质心")center = km.cluster_centers_print(center)D_data["cluster"] = km.labels_plt.rcParams["font.size"] = 14colors = np.array(["red", "gray", "orange", "pink", "blue", "green"])D_data["cluster"] = km.labels_D_data = D_data.sort_values(by="cluster")xx = np.array(D_data[D_data.columns[0]])  # 取前两个维度可视化yy = np.array(D_data[D_data.columns[1]])cc = np.array(D_data["cluster"])plt.scatter(xx, yy, c=colors[cc])  # c=colors[cc]if D_data.shape[0] >= 1:plt.scatter(center[:, 0], center[:, 1], marker="o", s=15, c="black")  # 画中心点plt.show()plt.close()def mykmeans(data, k):# 计算距离def get_dis(data, center, k):ret = []for point in data:# np.tile(a, (2, 1))就是把a先沿x轴复制1倍,即没有复制,仍然是[0, 1, 2]。 再把结果沿y方向复制2倍得到array([[0, 1, 2], [0, 1, 2]])# k个中心点,所以有k行diff = np.tile(point, (k, 1)) - centersquaredDiff = diff ** 2  # 平方squaredDist = np.sum(squaredDiff, axis=1)  # 和  (axis=1表示行)distance = squaredDist ** 0.5  # 开根号ret.append(distance)return np.array(ret)def draw(data, cluster):D_data = pd.DataFrame(data)plt.rcParams["font.size"] = 14colors = np.array(["red", "gray", "orange", "pink", "blue", "green"])D_data["cluster"] = clusterD_data = D_data.sort_values(by="cluster")xx = np.array(D_data[D_data.columns[0]])  # 取前两个维度可视化yy = np.array(D_data[D_data.columns[1]])cc = np.array(D_data["cluster"])plt.scatter(xx, yy, c=colors[cc])  # c=colors[cc]plt.show()plt.close()# 计算质心def classify(data, center, k):# 计算样本到质心的距离clalist = get_dis(data, center, k)# 分组并计算新的质心minDistIndices = np.argmin(clalist, axis=1)  # axis=1 表示求出每行的最小值的下标newCenter = pd.DataFrame(data).groupby(minDistIndices).mean()  # DataFramte(dataSet)对DataSet分组,groupby(min)按照min进行统计分类,mean()对分类结果求均值newCenter = newCenter.values# 计算变化量changed = newCenter - centerreturn changed, newCenterdata = data.tolist()# 随机取质心centers = random.sample(data, k)# 更新质心 直到变化量全为0changed, newCenters = classify(data, centers, k)while np.any(changed != 0):changed, newCenters = classify(data, newCenters, k)centers = sorted(newCenters.tolist())  # tolist()将矩阵转换成列表 sorted()排序# 根据质心计算每个集群cluster = []clalist = get_dis(data, centers, k)  # 调用欧拉距离minDistIndices = np.argmin(clalist, axis=1)# print(minDistIndices)for i in range(k):cluster.append([])for i, j in enumerate(minDistIndices):  # enymerate()可同时遍历索引和遍历元素cluster[j].append(data[i])draw(data, minDistIndices)if __name__ == '__main__':random.seed(1129)data = pd.read_csv("watermelonData.csv").sample(frac=1, random_state=1129)# 因为西瓜数据集每列都是0到1的,所以这里就不进行标准化了data_shuffled = np.array(data)# 划分训练集测试集,感觉不太需要测试集,直接把比例拉到1data_train = data_shuffled[:int(data_shuffled.shape[0]*1), :]data_test = data_shuffled[data_train.shape[0]:, :]# 维度上去了就降维if data_train.shape[1]>10:tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000, method='exact', random_state=0)data_train = tsne.fit_transform(data_train)choice = 0while choice != 3:print("1. 手写\n2. sklearn\n3. 退出")try:choice = int(input())except:breakif choice == 1:print("请输入k值")try:k = int(input())except:breakprint("手写求解中...")# 参考:https://blog.csdn.net/qq_43741312/article/details/97128745# 主要是发现了很多np和pd在计算的时候的用法mykmeans(data_train, k)elif choice == 2:print("请输入k值")try:k = int(input())except:breakprint('sklearn yyds')sk(data_train, k)else:print("退出成功")choice = 3break

参考
吴恩达《机器学习》
sklearn官网
《百面机器学习》

http://www.ds6.com.cn/news/118043.html

相关文章:

  • 介绍一个地方旅游网站怎么做seo兼职外包
  • 怎么做球球业务网站地推拉新app推广平台有哪些
  • 网站策划书如何做seo的培训网站哪里好
  • 自己做网站怎么上传今日国际新闻摘抄
  • 网站开发需求文件一个新的app如何推广
  • hexo ghost wordpress上海优化seo
  • tp框架做网站的优点宝塔没有域名直接做网站怎么弄
  • 日本 男女做网站怎样建立自己网站
  • 做网站预付款是多少合肥网站排名提升
  • 网站赚钱方法网络推广加盟
  • 网站优化的监测评价安卓优化大师2021
  • 个人网站设计论文参考文献百度客服电话24小时人工服务热线
  • 庐江县建设局网站品牌策划的五个步骤
  • 在哪个网站做一件代发靠谱吗my77728域名查询
  • 小企业做网站中国疫情最新数据
  • 让你做一个旅游网站你会怎么做人工智能培训心得
  • 免费网站制作app企业qq官方下载
  • 国外做婚纱的网站公司网站的推广
  • 云南省建设厅合同网站成都百度快照优化排名
  • 网站的备案号查询廊坊关键词排名首页
  • 华硕固件做网站6淘大象排名查询
  • 如何做彩票网站的源码免费营销软件网站
  • wordpress简约商城东莞seo培训
  • 山西 网站建设品牌推广思路
  • 国外主流媒体网站搜索引擎优化的概念
  • 网站建设费用 优帮云优化营商环境条例心得体会
  • 江油专业网站建设咨询网络营销什么意思
  • 山东app下载安装注册seo和sem是什么
  • 郑州网站 建设网站百度关键词优化
  • 河源疫情最新消息今天太原seo快速排名怎么样