当前位置: 首页 > news >正文

外贸企业网站制作公司网络组建方案

外贸企业网站制作,公司网络组建方案,做一个app需要投资多少钱,龙华做棋牌网站建设哪家好一、前言 不同于计算机视觉的百花齐放,不同网络适用不同情况,NLP则由Transformer一统天下。transformer是2017年提出的一种基于自注意力机制的神经网络架构,transformers库是hugging face社区创造的一个py库,通过该库可以实现统一…

一、前言

不同于计算机视觉的百花齐放,不同网络适用不同情况,NLP则由Transformer一统天下。transformer是2017年提出的一种基于自注意力机制的神经网络架构,transformers库是hugging face社区创造的一个py库,通过该库可以实现统一的接口去下载调用社区中的模型,并进行微调等等操作。 (没梯子也可以手动下载)

二、流程

①分词

1、含义

神经网络只能处理数字,因此必须将文本转换为数值(如词表索引)。先利用分词器,将连续的文本拆分为离散的单元(Token),现在一般直接调用transformers库的分词器完成分词即可。

在自然语言处理(NLP)中,Token(标记/词元) 是文本处理的最小单位,可以理解为将一段文本“拆解”后的基本元素。它的具体含义取决于分词策略(Tokenization),以下是详细解释:


1. Token 的常见形式

  • 单词:例如英文中按空格切分("hello""world")。
  • 子词(Subword):将长词或罕见词拆分为更小的片段(如 "unhappiness" → "un" + "##happiness")。
  • 字符:单个字母或汉字(如 "A""语")。
  • 标点/符号:例如 ",""?"
  • 特殊标记:模型预定义的符号(如 [CLS][SEP]<pad>)。

2. 为什么需要 Tokenization?

  • 统一输入格式:将文本转换为模型可处理的数值(如 input_ids)。
  • 解决未登录词(OOV):通过子词拆分处理词典外的词汇(例如 "ChatGPT" → "Chat" + "G" + "PT")。
  • 跨语言兼容:适用于无空格语言(如中文、日文)或黏着语(如土耳其语)。

3. 不同分词策略的 Token 示例

(1) 英文文本

  • 原始句子"Don't hesitate to try!"
  • 分词结果(不同策略):
    • Word-based(按单词):["Don't", "hesitate", "to", "try", "!"]
    • Subword(BERT 风格)["Don", "'", "t", "hesitate", "to", "try", "!"]
    • Character-based(按字符):["D", "o", "n", "'", "t", "h", "e", ...]

(2) 中文文本

  • 原始句子"深度学习很有趣!"
  • 分词结果(不同策略):
    • 按词语["深度", "学习", "很", "有趣", "!"]
    • 按子词(SentencePiece)["深", "度", "学", "习", "很", "有", "趣", "!"]
    • 按字符["深", "度", "学", "习", "很", "有", "趣", "!"]

4. Token 在模型中的使用

  • 数值化映射:每个 Token 会被转换为词典中的索引(ID)。
    例如:"hello" → 1234"!" → 99
  • 输入格式:文本最终转换为模型所需的 input_ids,例如:
    "Hello world!" → [101, 1234, 2137, 999, 102](BERT 风格)。

5. 不同模型的分词器对比

模型/分词器分词策略Token 示例
BERTWordPiece["hello", "##world", "!"]
GPT-3Byte-Pair (BPE)["hello", " world", "!"]
T5SentencePiece["▁Hello", "▁world", "!"]
中文BERT按字切分["深", "度", "学", "习"]

6. 关键点总结

  • Token 是文本的原子单位:拆解文本的方式取决于任务需求和语言特性。
  • 子词分词是主流:平衡词典大小与未登录词问题(如 "ChatGPT" 拆为 ["Chat", "G", "PT"])。
  • Token 与模型强相关:BERT、GPT 等模型的分词器需配套使用。

如果你正在使用 Transformers 库,可以这样体验分词过程:

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
text = "Don't hesitate to try!"
tokens = tokenizer.tokenize(text)  # 输出:["don", "'", "t", "hesitate", "to", "try", "!"]
input_ids = tokenizer.encode(text) # 输出:数值化的 Token ID 列

分词后的Token往往会将每个Token映射到唯一一个ID,因为计算机只能处理数值,无法直接理解字符、词语或句子,可以理解为有一个超级大的字典,足以容纳所有字符,每个Token都可以对应唯一ID,训练模型是通过Token的ID进行的。(在对一个句子分词和映射时,可能会加入一些分词符,所以打印映射结果可能会比分词后的字符数多)

2、分词器(Tokenizer)

(1)AutoTokenizer

前面说过,不同的模型可能会使用不同的分词策略,所以如果使用不同的模型,就需要加载不同的分词器以使用不同的分词策略,transformers提供了AutoTokenizer,可以自动实现判断其分词策略,只需要提供给它对应的模型名即可。

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")# 将模型名传入即可自动判断分词策略
text = "Don't hesitate to try!"
tokens = tokenizer.tokenize(text)  # 分词结果:["don", "'", "t", "hesitate", "to", "try", "!"]
input_ids = tokenizer.encode(text) # 数值化的 Token ID 列表

(2)分词器相关参数

  • tokenizer.tokenize():轻量级工具,仅用于分词调试。
  • tokenizer():一站式解决方案,生成模型所需的完整输入。
    根据需求选择合适的方法:若直接调用模型,永远优先使用 tokenizer();若需中间结果(如分析分词策略),再用 tokenizer.tokenize()
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")# 将模型名传入即可自动判断分词策略
raw_inputs = ["Don't hesitate to try!","I love eat rice!"]
tokens = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors='pt')
input_ids = tokenizer.encode(raw_inputs)
print(tokens)
print(input_ids)

# out

{'input_ids': tensor([[  101,  2123,  1005,  1056, 16390,  2000,  3046,   999,   102],
        [  101,  1045,  2293,  4521,  5785,   999,   102,     0,     0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1],
        [1, 1, 1, 1, 1, 1, 1, 0, 0]])}
[101, 2123, 1005, 1056, 16390, 2000, 3046, 999, 102, 1045, 2293, 4521, 5785, 999, 102] 

  • padding:填充,以拥有最长Token的那句话为基准,为其他不够长的进行填充,以使处理后的TokenID列表长度一致。
  • truncation:截断,将输入文本控制在模型能接受的最大长度内,如Transformer 的注意力机制:计算复杂度随输入长度呈平方级增长(O(n²)),模型预训练时固定了最大长度(如 BERT 为 512 Tokens)
  • attention_mask:用于告诉模型在处理输入时应该“关注”哪些位置,忽略哪些位置。它的核心作用是解决文本长度不一致和填充(Padding)带来的问题,因为在padding时会对较短Token的句子做填充,填充部分是无效输入,如果没有 attention_mask,模型会误认为填充的 0 是有效输入,导致计算错误。
  • return_tensors(返回张量格式):指定返回数据的框架格式。常用值

    • "pt":返回 PyTorch 张量。
    • "tf":返回 TensorFlow 张量。
    • "np":返回 NumPy 数组。
    • None:返回列表(默认)。

3、模型的缓存与加载

from transformers import AutoModel, AutoTokenizer# 下载模型和分词器到 cache_dir/bert
model = AutoModel.from_pretrained("bert-base-uncased", cache_dir="./bert")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

 AutoModel用于找到并缓存或加载对应模型,cache_dir可指定缓存路径,默认会放在C盘的.cache/huggingface目录下。

http://www.ds6.com.cn/news/116233.html

相关文章:

  • 规划设计公司探讨交流宁波网站seo公司
  • 网站的验证码是怎么做的福州百度seo排名
  • 做深度报道的网站营销软文是什么意思
  • 卡片式网站模板下载互联网怎么打广告推广
  • 做网站站长开通vip免费网站推广群发软件
  • 网站开发公司杭州网站建设网站平台有哪些
  • 社区网站优化三个关键词介绍自己
  • qq邮箱怎么做网站电脑培训学校
  • 企业展厅设计要点长春seo关键词排名
  • wordpress商城积分插件seo优化报价公司
  • 网站续费 多久福建百度代理公司
  • 东莞疫情最新消息实时更新数据跟我学seo
  • 男男互做网站上海网上推广
  • 网站正能量怎样才能上百度
  • 南通住房和城乡建设厅网站首页google推广教程
  • 网站设计 卡片式设计搜索引擎营销的主要方式有哪些?
  • 设计兼职网站百度推广课程
  • 长业建设集团有限公司网站市场推广外包团队
  • 网站制作公司 沈阳企业如何进行网络营销
  • 网站开发毕业设计收获与体会营销企业
  • 大兴智能网站建设哪家好国外推广网站
  • 正能量不良网站推荐2020网站优化设计的基础是网站基本要素及每个细节的优化
  • 婚纱外贸soho建哪种网站好推广普通话ppt课件
  • 当当网网站开发计划和预算郑州官网网站优化公司
  • 哪里有网站建设定制怎么在百度发布信息
  • wordpress 全站 下载关键字c语言
  • 怎们自己做网站五种常用的网站推广方法
  • wordpress双语建站互联网推广方式有哪些
  • 网站模板编辑软件广州seo怎么做
  • 品牌网站建设绿d茶seo技术团队