当前位置: 首页 > news >正文

安福相册网站怎么做的免费网络推广网址

安福相册网站怎么做的,免费网络推广网址,网站seo插件,专做电子产品评测的网站本地部署文生图模型 Flux 0. 引言1. 本地部署1-1. 创建虚拟环境1-2. 安装依赖模块1-3. 创建 Web UI1-4. 启动 Web UI1-5. 访问 Web UI 0. 引言 2024年8月1日,blackforestlabs.ai发布了 FLUX.1 模型套件。 FLUX.1 文本到图像模型套件,该套件定义了文本到…

本地部署文生图模型 Flux

  • 0. 引言
  • 1. 本地部署
    • 1-1. 创建虚拟环境
    • 1-2. 安装依赖模块
    • 1-3. 创建 Web UI
    • 1-4. 启动 Web UI
    • 1-5. 访问 Web UI

在这里插入图片描述

0. 引言

2024年8月1日,blackforestlabs.ai发布了 FLUX.1 模型套件。

FLUX.1 文本到图像模型套件,该套件定义了文本到图像合成的图像细节、提示依从性、样式多样性和场景复杂性的新技术。

为了在可访问性和模型功能之间取得平衡,FLUX.1 有三种变体:FLUX.1 [pro]、FLUX.1 [dev] 和 FLUX.1 [schnell]:

  • FLUX.1 [pro]:FLUX.1 的佼佼者,提供最先进的性能图像生成,具有顶级的提示跟随、视觉质量、图像细节和输出多样性。在此处通过我们的 API 注册 FLUX.1 [pro] 访问权限。FLUX.1 [pro] 也可通过 Replicate 和 fal.ai 获得。
  • FLUX.1 [dev]:FLUX.1 [dev] 是一个用于非商业应用的开放权重、指导蒸馏模型。FLUX.1 [dev] 直接从 FLUX.1 [pro] 蒸馏而来,获得了相似的质量和快速粘附能力,同时比相同尺寸的标准模型效率更高。FLUX.1 [dev] 权重在 HuggingFace 上可用,可以直接在 Replicate 或 Fal.ai 上试用。
  • FLUX.1 [schnell]:我们最快的模型是为本地开发和个人使用量身定制的。FLUX.1 [schnell] 在 Apache2.0 许可下公开可用。类似,FLUX.1 [dev],权重在Hugging Face上可用,推理代码可以在GitHub和HuggingFace的Diffusers中找到。

1. 本地部署

1-1. 创建虚拟环境

conda create -n flux python=3.11 -y
conda activate flux

1-2. 安装依赖模块

git clone https://github.com/black-forest-labs/flux; cd flux
pip install -e '.[all]'
pip install accelerate
pip install git+https://github.com/huggingface/diffusers.git
pip install optimum-quanto
pip install gradio

1-3. 创建 Web UI

import torchimport gradio as grfrom optimum.quanto import freeze, qfloat8, quantizefrom diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFastdtype = torch.bfloat16# schnell is the distilled turbo model. For the CFG distilled model, use:
# bfl_repo = "black-forest-labs/FLUX.1-dev"
# revision = "refs/pr/3"
#
# The undistilled model that uses CFG ("pro") which can use negative prompts
# was not released.
bfl_repo = "black-forest-labs/FLUX.1-schnell"
revision = "refs/pr/1"
# bfl_repo = "black-forest-labs/FLUX.1-dev"
# revision = "main"scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler", revision=revision)
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype, revision=revision)
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype, revision=revision)
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype, revision=revision)
transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype, revision=revision)# Experimental: Try this to load in 4-bit for <16GB cards.
#
# from optimum.quanto import qint4
# quantize(transformer, weights=qint4, exclude=["proj_out", "x_embedder", "norm_out", "context_embedder"])
# freeze(transformer)
quantize(transformer, weights=qfloat8)
freeze(transformer)quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)pipe = FluxPipeline(scheduler=scheduler,text_encoder=text_encoder,tokenizer=tokenizer,text_encoder_2=None,tokenizer_2=tokenizer_2,vae=vae,transformer=None,
)
pipe.text_encoder_2 = text_encoder_2
pipe.transformer = transformer
pipe.enable_model_cpu_offload()def generate(prompt, steps, guidance, width, height, seed):if seed == -1:seed = torch.seed()generator = torch.Generator().manual_seed(int(seed))image = pipe(prompt=prompt,width=width,height=height,num_inference_steps=steps,generator=generator,guidance_scale=guidance,).images[0]return imagedemo = gr.Interface(fn=generate, inputs=["textbox", gr.Number(value=4), gr.Number(value=3.5), gr.Slider(0, 1920, value=1024, step=2), gr.Slider(0, 1920, value=1024, step=2), gr.Number(value=-1)], outputs="image")demo.launch(server_name="0.0.0.0")

1-4. 启动 Web UI

python flux_on_potato.py

1-5. 访问 Web UI

使用浏览器打开 http://localhost:7860 就可以访问了。

在这里插入图片描述

reference:

  • https://blackforestlabs.ai/announcing-black-forest-labs/
  • https://github.com/black-forest-labs/flux/
  • https://github.com/black-forest-labs/flux/issues/7
  • https://gist.github.com/AmericanPresidentJimmyCarter/873985638e1f3541ba8b00137e7dacd9
http://www.ds6.com.cn/news/115140.html

相关文章:

  • 山西手机网站建设网络的推广
  • wordpress 做音乐网站怎样建网站?
  • wordpress云存储插件四川旅游seo整站优化站优化
  • 苹果电脑可以做网站吗新榜数据平台
  • 罗湖网站建设的公司哪家好二级域名在线扫描
  • 湘潭网站建设优化技术怎么开个人网站
  • 淘宝客导购网站怎么建设网站seo视频狼雨seo教程
  • 西安网站建设现状网络营销推广工具
  • 中国摄影网站有哪些高清视频线转换线
  • 网站开发项目工期流程seo联盟
  • 秦皇岛做网站的公司黑五类广告推广
  • 废旧网站那个做的最好浙江网站推广公司
  • 做网站需要知道什么网站怎么优化自己免费
  • 程序员做赌博类网站网站优化推广方法
  • 烟台做网站优化哪家好怎样申请自己的电商平台
  • 自己做网站需要会什么关键词如何确定
  • 怎么在企业站建立网站郑州seo技术培训班
  • 中企动力做的家具行业网站郑州seo网站有优化
  • 网站建设客户资源360广告投放平台
  • 国内购物网站哪个最好搜索引擎google
  • 调颜色网站如何做广告宣传与推广
  • 建设银行什么网站可买手表刷推广软件
  • 电子版简历在线制作百度app关键词优化
  • 教师做网站赚钱上海优化seo公司
  • 东莞做网站哪个公司好各大免费推广网站
  • 品牌网站制作流程谷歌chrome浏览器下载
  • 强大的网站设计模板网站
  • pc网站 手机网站 微信网站 上海网络营销成功案例
  • 成都网站设计是什么专业制作网页的公司
  • 做网站的开发软件江苏提升关键词排名收费