当前位置: 首页 > news >正文

能解析国外网站的dns上海做seo的公司

能解析国外网站的dns,上海做seo的公司,ip池代理,国内外网站建设2017我们使用sparksql进行编程,编程的过程我们需要创建dataframe对象,这个对象的创建方式我们是先创建RDD然后再转换rdd变成为DataFrame对象。 但是sparksql给大家提供了多种便捷读取数据的方式。 //原始读取数据方式 sc.textFile().toRDD sqlSc.createDat…

我们使用sparksql进行编程,编程的过程我们需要创建dataframe对象,这个对象的创建方式我们是先创建RDD然后再转换rdd变成为DataFrame对象。

但是sparksql给大家提供了多种便捷读取数据的方式。

//原始读取数据方式
sc.textFile().toRDD
sqlSc.createDataFrame(rdd,schema)
//更便捷的使用方式
sqlSc.read.text|orc|parquet|jdbc|csv|json
df.write.text|orc|parquet|jdbc|csv|json

write写出存储数据的时候也是文件夹的,而且文件夹不能存在。

  • csv是一个介于文本和excel之间的一种格式,如果是文本打开用逗号分隔的。
  • text文本普通文本,但是这个文本必须只能保存一列内容。

以上两个文本都是只有内容的,没有列的。

  • json是一种字符串结构,本质就是字符串,但是存在kv,例子 {"name":"zhangsan","age":20}

多平台解析方便,带有格式信息。

  • orc格式一个列式存储格式,hive专有的。
  • parquet列式存储,顶级项目

以上都是列式存储问题,优点(1.列式存储,检索效率高,防止冗余查询 2.带有汇总信息,查询特别快 3.带有轻量级索引,可以跳过大部分数据进行检索),他们都是二进制文件,带有格式信息。

jdbc 方式,它是一种协议,只要符合jdbc规范的服务都可以连接,mysql,oracle,hive,sparksql

整体代码:

package com.hainiu.sparkimport org.apache.spark.sql.SQLContext
import org.apache.spark.sql.expressions.Window
import org.apache.spark.{SparkConf, SparkContext}import java.util.Propertiesobject TestMovieWithSql {def main(args: Array[String]): Unit = {//??movie???//1.id  middle=name  last=typeval conf = new SparkConf()conf.setAppName("movie")conf.setMaster("local[*]")conf.set("spark.shuffle.partitions","20")val sc = new SparkContext(conf)val sqlSc = new SQLContext(sc)import sqlSc.implicits._//deal dataval df = sc.textFile("data/movies.txt").flatMap(t => {val strs = t.split(",")val mid = strs(0)val types = strs.reverse.headval name = strs.tail.reverse.tail.reverse.mkString(" ")types.split("\\|").map((mid, name, _))}).toDF("mid", "mname", "type")df.limit(1).show()val df1 = sc.textFile("data/ratings.txt").map(t=>{val strs = t.split(",")(strs(0),strs(1),strs(2).toDouble)}).toDF("userid","mid","score")df1.limit(1).show()import org.apache.spark.sql.functions._val df11 = df.join(df1, "mid").groupBy("userid", "type").agg(count("userid").as("cnt")).withColumn("rn", row_number().over(Window.partitionBy("userid").orderBy($"cnt".desc))).where("rn = 1").select("userid", "type")val df22 = df.join(df1, "mid").groupBy("type", "mname").agg(avg("score").as("avg")).withColumn("rn", row_number().over(Window.partitionBy("type").orderBy($"avg".desc))).where("rn<4").select("type", "mname")val df33 = df11.join(df22, "type")//spark3.1.2?? spark2.x//    df33.write.csv()df33.write.format("csv").save("data/csv")//    df33.write.
//      csv("data/csv")
//    df33.write.json("data/json")//    df33.write.parquet("data/parquet")
//    df33.write.orc("data/orc")
//    val pro = new Properties()
//    pro.put("user","root")
//    pro.put("password","hainiu")
//    df33.write.jdbc("jdbc:mysql://11.99.173.24:3306/hainiu","movie",pro)}
}

为了简化存储的计算方式:

package com.hainiu.sparkimport org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}object TestSink {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("test sink")conf.setMaster("local[*]")val sc = new SparkContext(conf)val sqlSc = new SQLContext(sc)import sqlSc.implicits._import org.apache.spark.sql.functions._val df = sc.textFile("data/a.txt").map(t=>{val strs = t.split(" ")(strs(0),strs(1),strs(2),strs(3))}).toDF("id","name","age","gender").withColumn("all",concat_ws(" ",$"id",$"name",$"age",$"gender")).select("all")
//    df.write.csv("data/csv")
//    df.write.format("org.apache.spark.sql.execution.datasources.v2.csv.CSVDataSourceV2")
//      .save("data/csv")
//    df.write.parquet("data/parquet")
//    df.write.format("org.apache.spark.sql.execution.datasources.v2.parquet.ParquetDataSourceV2")
//      .save("data/parquet")
//    df.write.format("org.apache.spark.sql.execution.datasources.v2.json.JsonDataSourceV2")
//      .save("data/json")df.write.format("org.apache.spark.sql.execution.datasources.v2.text.TextDataSourceV2").save("data/text")}
}

读取数据代码:

package com.hainiu.sparkimport org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContextimport java.util.Propertiesobject TestReadData {def main(args: Array[String]): Unit = {val conf = new SparkConf()conf.setAppName("movie")conf.setMaster("local[*]")conf.set("spark.shuffle.partitions", "20")val sc = new SparkContext(conf)val sqlSc = new SQLContext(sc)
//    sqlSc.read.text("data/text").show()
//    sqlSc.read.csv("data/csv").show()
//  
//    sqlSc.read.parquet("data/parquet").show()
//    sqlSc.read.json("data/json").show()sqlSc.read.format("org.apache.spark.sql.execution.datasources.v2.text.TextDataSourceV2").load("data/text").show()sqlSc.read.format("org.apache.spark.sql.execution.datasources.v2.csv.CSVDataSourceV2").load("data/csv").show()sqlSc.read.format("org.apache.spark.sql.execution.datasources.v2.json.JsonDataSourceV2").load("data/json").show()sqlSc.read.format("org.apache.spark.sql.execution.datasources.v2.parquet.ParquetDataSourceV2").load("data/parquet").show()sqlSc.read.orc("data/orc").show()val pro = new Properties()pro.put("user","root")pro.put("password","hainiu")sqlSc.read.jdbc("jdbc:mysql://11.99.173.24:3306/hainiu","movie",pro).show()}
}
http://www.ds6.com.cn/news/111112.html

相关文章:

  • 织梦电影网站免费模板怎么开发一款app软件
  • 网站建设运营方案怎么网上推广自己的产品
  • 外贸网站官网怎么做网络广告营销的典型案例
  • 会展设计pptseo千享科技
  • 沈阳seo建站在百度上怎么发布广告
  • 中山网站建设乐云seo模板中心佛山网站建设模板
  • 抖音seo公司帝搜平台seo是指
  • 青海网站建设加q5299丶14602做词社群运营
  • 很多网站没有后台新闻稿营销
  • 为什么招聘网站做不大网站怎么做的
  • 怎么查询公司网站备案广州百度seo
  • 淮南医院网站建设qq推广软件
  • 网站建设 企业网站 框架网站建设的数字化和互联网化
  • 网站的建设维护宝鸡seo
  • lao3d wordpress 插件优化网站建设seo
  • 网站设计排行榜前十优化防控措施
  • 网站开发公司制作平台网上国网app推广方案
  • 网站如何做seo优化优化疫情防控
  • 网站建设怎么寻找客户最近中国新闻热点大事件
  • 临沂谁会做网站在百度怎么发广告做宣传
  • 有哪些做西点及烘焙的网站企业网站关键词优化
  • 医院网站制作优化排名推广教程网站
  • 淄博微信网站制作企业推广软件
  • 网站建设的基本流程是什么热狗网站排名优化外包
  • smartos wordpress快速提高网站关键词排名优化
  • 如何做网站免费教程广东省新闻
  • 淘宝网站制作建设是真的吗合肥今日头条最新消息
  • 南阳网站推广效果seo的作用有哪些
  • 做外贸网站费用百度免费广告发布平台
  • 干部网络培训平台苏州网站优化排名推广