当前位置: 首页 > news >正文

福田做商城网站建设哪家公司便宜点网络优化公司有哪些

福田做商城网站建设哪家公司便宜点,网络优化公司有哪些,深圳市大鹏建设局网站,什么样的企业需要做网站【Python】一文向您详细介绍 np.inner() 下滑即可查看博客内容 🌈 欢迎莅临我的个人主页 👈这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地!🎇 🎓 博主简介:985高校的普通本硕,曾…

【Python】一文向您详细介绍 np.inner()


 
下滑即可查看博客内容
在这里插入图片描述

🌈 欢迎莅临我的个人主页 👈这里是我静心耕耘深度学习领域、真诚分享知识与智慧的小天地!🎇

🎓 博主简介985高校的普通本硕,曾有幸发表过人工智能领域的 中科院顶刊一作论文,熟练掌握PyTorch框架

🔧 技术专长: 在CVNLP多模态等领域有丰富的项目实战经验。已累计提供近千次定制化产品服务,助力用户少走弯路、提高效率,近一年好评率100%

📝 博客风采: 积极分享关于深度学习、PyTorch、Python相关的实用内容。已发表原创文章600余篇,代码分享次数逾九万次

💡 服务项目:包括但不限于科研辅导知识付费咨询以及为用户需求提供定制化解决方案

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

🌵文章目录🌵

  • 🔍一、初识`np.inner()`
      • 示例代码
  • 🧠二、理解点积的意义
      • 示例:计算向量夹角
  • 🔧三、`np.inner()`与`np.dot()`的区别
      • np.dot() 示例
  • 🎯四、`np.inner()`的实际应用
      • 示例:计算向量间的相似度
  • 🎯五、`np.inner()`在特征工程中的应用
  • 🚀六、总结与展望

下滑即可查看博客内容

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

🔍一、初识np.inner()

在Python的NumPy库中,np.inner()函数是一个用于计算两个数组的点积(inner product)的函数。尽管其名字暗示了内部(inner)的某种特性,但实际上它主要用于一维数组(向量)的点积计算。点积,又称标量积或内积,是线性代数中的一个基本概念,其结果是一个标量(即一个单一的数)。

示例代码

import numpy as np# 定义两个一维数组
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])# 计算a和b的点积
inner_product = np.inner(a, b)
print(f"The inner product of a and b is: {inner_product}")

输出结果将会是32,因为1*4 + 2*5 + 3*6 = 32


🧠二、理解点积的意义

点积不仅仅是一个数学运算,它还具有深刻的几何和物理意义。在几何上,两个向量的点积等于它们的模长与它们之间夹角的余弦的乘积。即,如果ab是两个向量,那么a·b = |a| * |b| * cos(θ),其中θ是两向量之间的夹角。

  • 当两向量方向相同时(夹角为0度),点积最大,为两向量模的乘积。
  • 当两向量垂直时(夹角为90度),点积为0。
  • 当两向量方向相反时(夹角为180度),点积为负,其绝对值等于两向量模的乘积。

示例:计算向量夹角

# 已知两向量的点积和模长,计算夹角
a_norm = np.linalg.norm(a)
b_norm = np.linalg.norm(b)
theta = np.arccos(np.inner(a, b) / (a_norm * b_norm))
print(f"The angle between a and b is: {np.degrees(theta):.2f} degrees")

这将输出两向量之间的夹角(以度为单位)。


🔧三、np.inner()np.dot()的区别

在NumPy中,另一个经常用于点积计算的函数是np.dot()。然而,np.dot()np.inner()在处理不同维度数组时的行为有所不同。

  • 对于两个一维数组(向量),np.inner()np.dot()的结果是相同的,都计算点积。
  • 对于二维数组(矩阵),np.dot()执行矩阵乘法,而np.inner()在NumPy中对于二维数组的行为并不直观,因为它主要用于一维数组的点积计算。

np.dot() 示例

A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])# 使用np.dot()进行矩阵乘法
dot_product = np.dot(A, B)
print("Matrix multiplication using np.dot():\n", dot_product)

🎯四、np.inner()的实际应用

点积在机器学习、物理学、工程学等多个领域都有广泛的应用。

  • 机器学习:在特征向量空间中,点积可用于计算两个数据点之间的相似度或距离。
  • 物理学:在力学中,力向量与位移向量的点积给出了功的计算。
  • 工程学:在信号处理中,点积可用于计算信号之间的相关性。

示例:计算向量间的相似度

# 假设有两个特征向量
v1 = np.array([1, 2, 3])
v2 = np.array([4, 5, 6])# 计算点积
dot_product = np.inner(v1, v2)# 计算两个向量的模
norm_v1 = np.linalg.norm(v1)
norm_v2 = np.linalg.norm(v2)# 使用点积和模的乘积来计算余弦相似度
cos_sim = dot_product / (norm_v1 * norm_v2)
print(f"Cosine similarity between v1 and v2: {cos_sim}")

在这个例子中,余弦相似度越接近1,表示两个向量在方向上越接近;如果为0,则表示两向量正交(即垂直);如果为负值,则表示两向量方向相反。


🎯五、np.inner()在特征工程中的应用

在机器学习领域,特征工程是一个关键步骤,它涉及从原始数据中提取有用的特征以供模型训练。np.inner()可以用于特征之间的交互,创建新的特征,这些新特征可能包含有关数据集的更多信息。


🚀六、总结与展望

通过本文,我们深入探讨了NumPy库中的np.inner()函数,从基础概念到实际应用。我们了解到np.inner()主要用于计算一维数组的点积,并探讨了它在不同领域的应用,如机器学习中的相似度计算和特征工程。

未来,随着数据科学和机器学习领域的不断发展,对高效、灵活且强大的数组操作工具的需求将日益增长。NumPy作为这一领域的基石,其提供的各种函数和工具将继续发挥重要作用。然而,随着新技术和新库的出现,我们也应该保持对新兴工具和方法的关注,以便在适当的时候采用它们来优化我们的解决方案。

http://www.ds6.com.cn/news/108896.html

相关文章:

  • 网站设计公司建设优化排名
  • 有没有帮人做简历的网站免费发布信息网站大全
  • vs 团队网站开发百度知道合伙人官网登录入口
  • 耀华建设管理有限公司网站站长工具推荐网站
  • 纯js做网站网络推广公司收费标准
  • wordpress开启多站点功免费网络推广平台有哪些
  • 做美国市场哪个网站好西安网站seo外包
  • 中小企业网站建设框架衡水网站seo
  • ps做网站效果图尺寸如何今日十大头条新闻
  • 制作网站民治网站制作专业
  • 策划文案的网站域名网站
  • 常州网站建设企业网站网络广告推广平台
  • 网站建设_网站设计 app制作企业网站开发多少钱
  • 为什么要建设公安公众服务网站seo网站怎么优化
  • 万网网站建设教程seo关键词排名公司
  • 两个网站共用一个数据库最新营销模式有哪些
  • 贵德网站建设公司网站免费推广的方法
  • 做网站的开发环境淘宝关键词指数
  • 北京做网站建设公司ui设计培训班哪家好
  • 四川做网站找谁网上推广方式
  • b2b网站制作平台windows优化大师官方免费
  • 云南汽车网络营销seo网络营销推广排名
  • 建立网站需要服务器吗上海app网络推广公司
  • 免费招聘网站哪个好百度推广优化
  • 猎头用什么网站做单百度客服转人工
  • 软件公司做网站推广科目网络营销的成功案例分析
  • 福州网站建设方案咨询网站优化要做哪些
  • 信息系统推广方案东莞seo建站
  • 利用js做网站百度站长号购买
  • 自建网站如何上传视频小说推广平台有哪些