当前位置: 首页 > news >正文

济南seo网站建设徐州seo推广优化

济南seo网站建设,徐州seo推广优化,网站建设销售好做吗,网页游戏吧一. Triangle方法 算法描述:三角法求分割阈值最早见于Zack的论文《Automatic measurement of sister chromatid exchange frequency》主要是用于染色体的研究,该方法是使用直方图数据,基于纯几何方法来寻找最佳阈值,它的成立条件…

一. Triangle方法

算法描述:三角法求分割阈值最早见于Zack的论文《Automatic measurement of sister chromatid exchange frequency》主要是用于染色体的研究,该方法是使用直方图数据,基于纯几何方法来寻找最佳阈值,它的成立条件是假设直方图最大波峰在靠近最亮的一侧,然后通过三角形求得最大直线距离,根据最大直线距离对应的直方图灰度等级即为分割阈值,图示如下:

三角几何化的过程。首先找到直方图中灰度值最高的一点并判别亮暗,然后找到最左边点,两点连接一条直线,求直方图上离直线最远的点,设置该点的灰度值为阈值。

有时候最大波峰对应位置不在直方图最亮一侧,而在暗的一侧,这样就需要翻转直方图,翻转之后求得值,用255减去即得到为阈值T。扩展情况的直方图表示如下:

算法特点:适用于单峰。这点和OTSU算法有很大区别,OTSU适用于双峰。

cv2中有三角分割的算法,直接使用即可。

import cv2
import matplotlib.pylab as pltdef main():img = cv2.imread('6.jpg', 0)ret, thresh1 = cv2.threshold(img, 0, 255, cv2.THRESH_TRIANGLE)print(ret)  # 结果是151.0titles = ['Original Image', 'After Binarization']images = [img, thresh1]for i in range(2):plt.subplot(1, 2, i + 1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main()

二. Maxentropy方法

最大熵阈值分割法和OTSU算法类似,假设将图像分为背景和前景两个部分。熵代表信息量,图像信息量越大,熵就越大,最大熵算法就是找出一个最佳阈值使得背景与前景两个部分熵之和最大。

给定一个大小为M*N的图像,直方图中所有矩形框所代表的数值之和,即为图像中的像素数量,设像素值i的像素在图中有h(i)个,即:

\sum_{i=0}^{K-1}h(i)=MN

相对应的归一化直方图表示为:

p(i)=\frac{h(i)}{MN}

其中0<=i<K。通常被解释为一个随机过程的概率分布或概率密度函数,p(i)表示的是图像中像素灰度值为i所出现的概率。i的累积概率值为1,即概率分布p必须满足以下关系:

\sum_{i=0}^{K-1}p(i)=1

与累积概率所对应的累积直方图H是一个离散的分布函数P()(通常也称为累积分布函数或cdf),P(i)表示像素值小于等于i的概率:

P(i)=\sum_{j=0}^{i}p(j)

在图像处理中,灰度图的熵定义如下:

Entropy=-\sum_{i=0}^{K-1}p(i)log_2p(i)

因为p(i)\in \left [ 0,1 \right ],所以log_2p(i)<0,-log_2p(i)>0

利用图像熵为准则进行图像分割有一定历史了,学者们提出了许多以图像熵为基础进行图像分割的方法。以下介绍一种由Kapuret al提出来,现在仍然使用较广的一种图像熵分割方法。

给定一个特定的阈值q(0<=q<K-1),对于该阈值所分割的两个图像区域C0,C1,这两部分的熵可写为:

H(0)=- \sum_{i=0}^{q}\frac{p(i)}{P_0(q)}log_2\frac{p(i)}{P_0(q)}

H(1)=- \sum_{i=q+1}^{K-1}\frac{p(i)}{P_1(q)}log_2\frac{p(i)}{P_1(q)}

其中:P_0(q)=\sum_{i=0}^{q}p(i)P_1(q)=\sum_{i=q+1}^{K-1}p(i)P_0(q)+P_1(q)=1

图像总熵为:H_q=H(0)+H(1)现在就是要遍历q(0<=q<K-1),使得Hq最大。

为了计算方便,对H(0)和H(1)的表达式进行优化:

H(0)=- \sum_{i=0}^{q}\frac{p(i)}{P_0(q)}\left ( log_2p(i)-log_2P_0(q) \right ) =-\frac{1}{P_0(q)}[\sum_{i=0}^{q}p(i)log_2p(i)-log_2P_0(q)\sum_{i=0}^{q}p(i)]

得到H(0)=\frac{1}{P_0(q)}S_0(q)+log_2P_0(q)

同理H(1)=\frac{1}{P_1(q)}S_1(q)+log_2P_1(q)

其中S_0(q)=-\sum_{i=0}^{q}p(i)log_2p(i)S_1(q)=-\sum_{i=q+1}^{K-1}p(i)log_2p(i)

import cv2
import matplotlib.pylab as plt
import numpy as np
import mathdef calcGrayHist(image):rows, cols = image.shape[:2]grayHist = np.zeros([256], np.uint64)for row in range(rows):for col in range(cols):grayHist[image[row][col]] += 1return grayHistdef thresh_entropy(image):rows, cols = image.shape# 求灰度直方图grayHist = calcGrayHist(image)# 归一化灰度直方图,即概率直方图normGrayHist = grayHist / float(rows*cols)  # 就是上面讲的p(i)# 1.计算累加直方图zeroCumuMoment = np.zeros([256], np.float32) # 就是上面讲的P(i)for i in range(256):if i == 0:zeroCumuMoment[i] = normGrayHist[i]else:zeroCumuMoment[i] = zeroCumuMoment[i-1] + normGrayHist[i]# 2.计算各个灰度级的熵entropy = np.zeros([256], np.float32)  # 就是上面讲的S_0(q)for i in range(256):if i == 0:if normGrayHist[i] == 0:  # 0log2_0是0,但是对数在0处没有定义entropy[i] = 0else:entropy[i] = -normGrayHist[i] * math.log2(normGrayHist[i])else:if normGrayHist[i] == 0:entropy[i] = entropy[i-1] # 0log2_0是0,但是对数在0处没有定义else:entropy[i] = entropy[i-1] - normGrayHist[i] * math.log2(normGrayHist[i])# 3.找阈值fT = np.zeros([256], np.float32)ft1, ft2 = 0.0, 0.0totalEntropy = entropy[255]for i in range(255):# 找最大值ft1 = entropy[i] / zeroCumuMoment[i] + math.log2(zeroCumuMoment[i])ft2 = (entropy[255] - entropy[i]) / (1 - zeroCumuMoment[i]) + math.log2(1 - zeroCumuMoment[i])fT[i] = ft1 + ft2# 找最大值的索引,作为得到的阈值print(fT)threshLoc = np.where(fT == np.max(fT))thresh = threshLoc[0][0]# 阈值处理threshold = np.copy(image)threshold[threshold>thresh] = 255threshold[threshold<=thresh] = 0return thresh, thresholddef main():img = cv2.imread("6.jpg", 0)thresh, threshImg = thresh_entropy(img)print(thresh) # 结果是104.0titles = ['Original Image', 'After Binarization']images = [img, threshImg]for i in range(2):plt.subplot(1, 2, i + 1)plt.imshow(images[i], 'gray')plt.title(titles[i])plt.xticks([])plt.yticks([])plt.show()main()

http://www.ds6.com.cn/news/108011.html

相关文章:

  • 做音乐网站要什么源码uc浏览器网页版入口
  • 做网站用python还是php做一个推广网站大概多少钱
  • 与有权重网站做友链seo快速排名工具
  • 海南网站公司手机app开发
  • 网页无法访问百度网站优化公司上海
  • 网站策划怎么写合肥网站设计
  • 网站自动识别移动终端南宁百度seo
  • 网站建设教程下载百度指数上多少就算热词
  • 昆明做企业网站多少钱网络推广网站排名
  • 做软件需要网站企业网站推广的一般策略
  • 傻瓜式wordpress宁德seo公司
  • 网站返利二维码怎么做南通网络推广
  • 网站备案的是空间还是域名企业培训的目的和意义
  • 南京做代账会计在哪个网站上找什么叫网络营销
  • p2p贷款网站开发短视频关键词优化
  • wordpress 添加留言板大连网站优化
  • 提高wordpress响应速度慢郑州网站优化渠道
  • 国家市场监管总局小微企业名录库沈阳seo搜索引擎
  • 北海做网站有哪家seo标签优化方法
  • 报纸做网站宣传费用长沙网红奶茶
  • 公司做网站排名友情链接平台站长资源
  • 西安网站制作开发网站维护费一年多少钱
  • 加强网站内容建设创新安卓优化大师历史版本
  • 香港服务器做盈利网站石家庄疫情防控最新政策
  • 做企业网站首页尺寸企业管理培训课程网课免费
  • wordpress主题企业宁波seo教程推广平台
  • 网站优化要怎么做才会做到最佳公司网址怎么制作
  • 广州注册公司流程及费用王通seo
  • 网站开发前端和后端怎么连接模板网站
  • 宜春网站建设公司联系方式seo谷歌外贸推广