当前位置: 首页 > news >正文

高端品牌网站建设服务软文撰写

高端品牌网站建设服务,软文撰写,邓州网站制作,淘客推广平台排名1. 计算图和导数 计算图的概念 计算图(Computation Graph)是一种有向无环图,用于表示数学表达式中的计算过程。每个节点表示一个操作或变量,每条边表示操作的依赖关系。通过计算图,可以轻松理解和实现反向传播。 计算…

1. 计算图和导数

计算图的概念
计算图(Computation Graph)是一种有向无环图,用于表示数学表达式中的计算过程。每个节点表示一个操作或变量,每条边表示操作的依赖关系。通过计算图,可以轻松理解和实现反向传播。

计算图的意义

  • 直观地展示复杂计算过程。
  • 支持自动微分,通过链式规则计算导数。
  • 应用于神经网络中梯度的高效计算。

例如,对于函数 z = ( x + y ) ⋅ w z = (x + y) \cdot w z=(x+y)w ,其计算图包括三个节点(加法、乘法、输入变量)和两条边。

2. 计算代价函数的偏导 - 单神经元

代价函数的定义
代价函数衡量模型输出与真实值之间的差距,例如平方误差:

L = 1 2 ( y − y ^ ) 2 L = \frac{1}{2} (y - \hat{y})^2 L=21(yy^)2

其中, y ^ \hat{y} y^ 是模型输出, y y y 是目标值。

单神经元的导数推导
假设输出为 y ^ = σ ( w x + b ) \hat{y} = \sigma(wx + b) y^=σ(wx+b) ,其中 σ \sigma σ 是激活函数(如 Sigmoid),导数计算如下:

  1. 对于权重 w w w
    ∂ L ∂ w = ∂ L ∂ y ^ ⋅ ∂ y ^ ∂ z ⋅ ∂ z ∂ w \frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial w} wL=y^Lzy^wz

  2. 对于偏置 b b b
    ∂ L ∂ b = ∂ L ∂ y ^ ⋅ ∂ y ^ ∂ z ⋅ ∂ z ∂ b \frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial b} bL=y^Lzy^bz

意义
通过计算偏导数,可以更新参数 w w w b b b 以最小化损失函数。

3. 链导法则求导

链导法则是反向传播的核心,其定义如下:

∂ L ∂ x = ∂ L ∂ y ⋅ ∂ y ∂ x \frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial x} xL=yLxy

步骤

  1. 先计算从输出到隐藏层的梯度。
  2. 再计算从隐藏层到输入的梯度。

例如,对于两层网络的损失函数 L = f ( g ( x ) ) L = f(g(x)) L=f(g(x)) ,使用链导法则:

∂ L ∂ x = ∂ f ∂ g ⋅ ∂ g ∂ x \frac{\partial L}{\partial x} = \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial x} xL=gfxg

4. 过程解释

反向传播过程包括以下步骤:

  1. 前向传播:计算网络输出和损失函数。
  2. 反向传播:从输出层开始,逐层计算梯度。
  3. 更新参数:使用梯度下降或其变体更新参数。

假设两层网络的权重为 W 1 W_1 W1 W 2 W_2 W2 ,反向传播过程为:

  1. 计算输出层梯度 δ 2 \delta_2 δ2
    δ 2 = ∂ L ∂ z 2 = ∂ L ∂ y ^ ⋅ σ ′ ( z 2 ) \delta_2 = \frac{\partial L}{\partial z_2} = \frac{\partial L}{\partial \hat{y}} \cdot \sigma'(z_2) δ2=z2L=y^Lσ(z2)

  2. 计算隐藏层梯度 δ 1 \delta_1 δ1
    δ 1 = ( δ 2 ⋅ W 2 T ) ⋅ σ ′ ( z 1 ) \delta_1 = (\delta_2 \cdot W_2^T) \cdot \sigma'(z_1) δ1=(δ2W2T)σ(z1)

  3. 更新权重和偏置:
    W 2 = W 2 − α ⋅ δ 2 ⋅ h 1 T W_2 = W_2 - \alpha \cdot \delta_2 \cdot h_1^T W2=W2αδ2h1T

    W 1 = W 1 − α ⋅ δ 1 ⋅ x T W_1 = W_1 - \alpha \cdot \delta_1 \cdot x^T W1=W1αδ1xT

5. 神经网络中的反向传播

多层网络中的反向传播
多层网络通过将链导法则逐层应用,从输出层反向传播至输入层。每层的梯度依赖于后一层的梯度。

实现代码示例

import numpy as np# 定义激活函数及其导数
def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):return sigmoid(x) * (1 - sigmoid(x))# 前向传播
x = np.array([1, 2])  # 输入
w1 = np.array([[0.1, 0.2], [0.3, 0.4]])  # 权重
b1 = np.array([0.5, 0.5])  # 偏置
z1 = np.dot(w1, x) + b1
a1 = sigmoid(z1)# 反向传播
delta = (a1 - 1) * sigmoid_derivative(z1)
grad_w1 = np.outer(delta, x)

6. 计算代价函数的偏导 - 两层神经网络

两层神经网络的反向传播在单层基础上扩展,每层分别计算:

∂ L ∂ W 1 , ∂ L ∂ W 2 , ∂ L ∂ b 1 , ∂ L ∂ b 2 \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2}, \frac{\partial L}{\partial b_1}, \frac{\partial L}{\partial b_2} W1L,W2L,b1L,b2L

总结与意义
反向传播是神经网络训练的核心,通过计算梯度并更新参数,使得网络能够有效学习复杂的映射关系,从而提高模型的泛化能力。

http://www.ds6.com.cn/news/107709.html

相关文章:

  • 网站的在线支付怎么做搭建一个app平台要多少钱
  • 软件公司招聘网站什么是网络营销含义
  • 莱芜政府网官方网站招聘信息东莞网站制作推广公司
  • 做网站游燕公司推广方案
  • 我想做个卷帘门网站怎么做seo关键词平台
  • 献县做网站的上海seo培训中心
  • 威海德嬴网站建设厦门人才网唯一官网招聘
  • 动态网站和静态网站的区别seo推广教程seo推广技巧
  • 涪陵网站建设怎么找推广渠道
  • wordpress 怎么上传湘潭seo培训
  • 西安网站策划设计邮件营销
  • 网站设计的宽度百度助手免费下载
  • 营销型网站建设怎么做什么是百度竞价排名服务
  • wordpress 倒计时插件登封网站关键词优化软件
  • 课程培训网站模板下载成人教育机构排行前十名
  • 工业设计包括哪些产品seo关键词怎么选择
  • flash网站的优点和缺点安徽网站seo
  • 钦州网站建设网页设计与网站建设教程
  • 做广告联盟怎么做网站上海百度竞价点击软件
  • 陕西企业网站建设哪家专业网络营销ppt案例
  • 黑龙江恒泰建设集团网站抖音网络营销案例分析
  • 新公司注册流程及费用朝阳区seo
  • 杭州网站备案要多久最新新闻热点事件2024
  • 企业网站建设的好处在线制作网页网站
  • 无锡网站建设 微信自己怎么搭建网站
  • 延安市网站建设谷歌推广怎么开户
  • 做毕业设计的网站设计8大营销工具指的是哪些
  • 长沙网站托管公司排名电话营销系统
  • 商业网站建设方案企业建站系统
  • 企业展厅建筑外观梧州网站seo