当前位置: 首页 > news >正文

免费个人logo设计网站爱站网工具

免费个人logo设计网站,爱站网工具,深圳网站设计灵点网络品牌,做网站的要多钱「作者主页」:士别三日wyx 「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」:零基础快速入门人工智能《机器学习入门到精通》 K-近邻算法 1、什么是K-近邻算法?2、K-近邻算法API3、…

「作者主页」:士别三日wyx
「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者
「推荐专栏」:零基础快速入门人工智能《机器学习入门到精通》

K-近邻算法

  • 1、什么是K-近邻算法?
  • 2、K-近邻算法API
  • 3、K-近邻算法实际应用
    • 3.1、获取数据集
    • 3.2、划分数据集
    • 3.3、特征标准化
    • 3.4、KNN处理并评估

1、什么是K-近邻算法?

K-近邻算法的核心思想是根据「邻居」「推断」你的类别。

K-近邻算法的思路其实很简单,比如我在北京市,想知道自己在北京的哪个区。K-近邻算法就会找到和我距离最近的‘邻居’,邻居在朝阳区,就认为我大概率也在朝阳区。

在这里插入图片描述

其中 K 是邻居个数的意思

  • 邻居个数「太少」,容易受到异常值的影响
  • 邻居个数「太多」,容易受到样本不均衡的影响。

2、K-近邻算法API

sklearn.neighbors.KNeighborsClassifier( n_neighbors=5, algorithm=‘auto’ ) 是实现K-近邻算法的API

  • n_neighbors:(可选,int)指定邻居(K)数量,默认值 5
  • algorithm:(可选,{ ‘auto’,‘ball_tree’,‘kd_tree’,‘brute’})计算最近邻居的算法,默认值 ‘auto’。

算法解析

  • brute:蛮力搜索,也就是线性扫描,训练集越大,消耗的时间越多。
  • kd_tree:构造kd树(也就是二叉树)存储数据以便对其进行快速检索,以中值切分构造的树,每个结点是一个超矩形,在维数小于20时效率高
  • ball_tree:用来解决kd树高维失效的问题,以质心C和半径r分割样本空间,每个节点是一个超球体。
  • auto:自动决定最合适的算法

函数

  • KNeighborsClassifier.fit( x_train, y_train):接收训练集特征 和 训练集目标
  • KNeighborsClassifier.predict(x_test):接收测试集特征,返回数据的类标签。
  • KNeighborsClassifier.score(x_test, y_test):接收测试集特征 和 测试集目标,返回准确率。
  • KNeighborsClassifier.get_params():获取接收的参数(就是 n_neighbors 和 algorithm 这种参数)
  • KNeighborsClassifier.set_params():设置参数
  • KNeighborsClassifier.kneighbors():返回每个相邻点的索引和距离
  • KNeighborsClassifier.kneighbors_graph():返回每个相邻点的权重

3、K-近邻算法实际应用

3.1、获取数据集

这里使用sklearn自带的鸢尾花「数据集」,它是分类最常用的分类试验数据集。

from sklearn import datasets# 1、获取数据集(实例化)
iris = datasets.load_iris()print(iris.data)

输出:

[[5.1 3.5 1.4 0.2][4.9 3.  1.4 0.2][4.7 3.2 1.3 0.2]

从打印的数据集可以看到,鸢尾花数据集有4个「属性」,这里解释一下属性的含义

  • sepal length:萼片长度(厘米)
  • sepal width:萼片宽度(厘米)
  • petal length:花瓣长度(厘米)
  • petal width:花瓣宽度(厘米)

3.2、划分数据集

接下来对鸢尾花的特征值(iris.data)和目标值(iris.target)进行「划分」,测试集为60%,训练集为40%。

from sklearn import datasets
from sklearn import model_selection# 1、获取数据集
iris = datasets.load_iris()
# 2、划分数据集
x_train, x_test, y_train, y_test = model_selection.train_test_split(iris.data, iris.target, random_state=6)
print('训练集特征值:', len(x_train))
print('测试集特征值:',len(x_test))
print('训练集目标值:',len(y_train))
print('测试集目标值:',len(y_test))

输出:

训练集特征值: 112
测试集特征值: 38
训练集目标值: 112
测试集目标值: 38

从打印结果可以看到,测试集的样本数是38,训练集的样本数是112,划分比例符合预期。


3.3、特征标准化

接下来,对训练集和测试集的特征值进行「标准化」处理(训练集和测试集所做的处理必须完全「相同」)。

from sklearn import datasets
from sklearn import model_selection
from sklearn import preprocessing# 1、获取数据集
iris = datasets.load_iris()
# 2、划分数据集
# x_train:训练集特征,x_test:测试集特征,y_train:训练集目标,y_test:测试集目标
x_train, x_test, y_train, y_test = model_selection.train_test_split(iris.data, iris.target, random_state=6)
# 3、特征标准化
ss = preprocessing.StandardScaler()
x_train = ss.fit_transform(x_train)
x_test = ss.fit_transform(x_test)
print(x_train)

输出:

[[-0.18295405 -0.192639    0.25280554 -0.00578113][-1.02176094  0.51091214 -1.32647368 -1.30075363][-0.90193138  0.97994624 -1.32647368 -1.17125638]

从打印结果可以看到,特征值发生了相应的变化。


3.4、KNN处理并评估

接下来,将训练集特征 和 训练集目标 传给 KNN,然后评估处理结果的「准确率」

from sklearn import datasets
from sklearn import model_selection
from sklearn import preprocessing
from sklearn import neighbors# 1、获取数据集
iris = datasets.load_iris()
# 2、划分数据集
# x_train:训练集特征,x_test:测试集特征,y_train:训练集目标,y_test:测试集目标
x_train, x_test, y_train, y_test = model_selection.train_test_split(iris.data, iris.target, random_state=6)
# 3、特征标准化
ss = preprocessing.StandardScaler()
x_train = ss.fit_transform(x_train)
x_test = ss.fit_transform(x_test)
# 4、KNN算法处理
knn = neighbors.KNeighborsClassifier(n_neighbors=2)
knn.fit(x_train, y_train)
# 5、评估结果
y_predict = knn.predict(x_test)
print('真实值和预测值对比:', y_predict == y_test)
score = knn.score(x_test, y_test)
print('准确率:', score)

输出:

真实值和预测值对比: [ True  True  True  True  True  True False  True  True  True False  TrueTrue  True  True False  True  True  True  True  True  True  True  TrueTrue  True  True  True  True  True  True  True  True  True False  TrueTrue  True]
准确率: 0.8947368421052632

从输出结果可以很容易看出,准确率是89%;真实值和预测值对比的结果中,True越多,表示准确率越高。

http://www.ds6.com.cn/news/107488.html

相关文章:

  • wordpress排队加载seo推荐
  • 专门做电商的招聘网站成都网站建设技术支持
  • 广东哪里网站建设网络营销的六个特点
  • 二手网站开发如何自己做网络推广
  • 如何选择企业网站开发金华关键词优化平台
  • 视频网站建设费用关键词优化软件哪家好
  • 政府网站建设论文福州seo管理
  • 临猗县 保障住房和建设住建网站360免费建站官网
  • 医院网站建设的规划品牌营销活动策划方案
  • 网站风格设计怎么写链接交换公司
  • 室内设计效果图网站推荐网络推广合作资源平台
  • 中央信访办电话24小时青岛百度快速优化排名
  • 同wordpressseo教程免费
  • 帮别人做网站怎么赚钱网络推广和seo
  • 网站做指向是什么意思线下推广怎么做
  • 怎么查看网站的ftp地址独立站推广
  • 用asp做的网站打开页面很慢互联网销售平台有哪些
  • c语言哪个网站可以做测试题百度商家入驻
  • 网站备案密码是什么样的aso优化平台
  • 南宁兴宁区建设局网站数据统计网站有哪些
  • 钦州网站建设设计关键词指数查询
  • 做机电证的网站seo关键词推广公司
  • wordpress站点更换域名免费b站推广网站不
  • 什么是网站主题查权重工具
  • 网站有后台更新不了搜索风云排行榜
  • 建立网站的详细步骤图解自媒体服务平台
  • 特产网站建设方案互动营销案例100
  • 2018年做淘宝客网站需要备案嘛济南网站建设制作
  • 网页制作源码免费海会网络做的网站怎么做优化
  • 旅游商城网站建设网络优化公司哪家好