当前位置: 首页 > news >正文

unity3d转行网站开发怀化网站seo

unity3d转行网站开发,怀化网站seo,MIUI官方网站开发版,软件技术和软件工程的区别本节主要介绍NLP和大模型的基础知识。提及了词表示如何从one-hot发展到Word Embedding。语言模型如何从N-gram发展成预训练语言模型PLMs。然后介绍了大模型在NLP任务上的表现,以及它遵循的基本范式。最后介绍了本课程需要用到的编程环境和GPU服务器。 一篇NLP方向的…

本节主要介绍NLP和大模型的基础知识。提及了词表示如何从one-hot发展到Word Embedding。语言模型如何从N-gram发展成预训练语言模型PLMs。然后介绍了大模型在NLP任务上的表现,以及它遵循的基本范式。最后介绍了本课程需要用到的编程环境和GPU服务器。

一篇NLP方向的综述推荐

Advances in Natural Language Processing - Julia Hirschberg,Columbia University(见绑定资源)

基本任务和应用

包括词性标注(Part of speech tagging),命名实体识别,共指消解,依赖关系。对于中文,由于词与词没有空格,所以还有一个中文的自动分词的任务。
在这里插入图片描述

  • 搜索引擎和广告:如何衡量用户的query与所有document的语义相似度-NLP要解决的问题;利用互联网之间的链接信息判断网站或网页的质量-数据挖掘和信息检索关心的问题
  • Knowledge Graph:知识图谱里有非常多NLP问题,如给定一个用户的查询,如何去匹配或寻找最相关的实体,以及相关知识。如何从大规模文本中挖掘,构建大的知识图谱,如何获取三元组结构化知识,本身也需要NLP技术。
  • Knowledge Graph Application:Question Answering
  • Machine Reading:从文本中抽取结构知识,扩展和更新知识图谱
  • Personal Assistant
  • Machine Translation
  • Sentiment Analysis and Opinion Mining
  • Computational Social Science

词表示

词表示的目标:
1.计算词相似性:相似
2.推断词之间的关系
在这里插入图片描述

常用的词表示方式:one-hot表示

在这里插入图片描述
这种表示方法的缺点是:任意两个词都是相互正交的。不利于考虑相似性。

基于共现词次数的表示

NLP提出了一种contextual的distribution。
在这里插入图片描述
这种表示方法的缺点是:词表越大,存储要求越高;低频词很稀疏,导致不够鲁棒。

Word Embedding

构建一个低维稠密向量空间,学习每个词的低维稠密向量表示。
在这里插入图片描述

语言模型(Language Modeling)

语言模型的任务是预测下一个词。
它的工作包括两个:1.一个序列的词成为一句话的概率;2.根据已有的词序列,预测下一个词出现的概率。
在这里插入图片描述

基本假设

未来的词只会收到之前词的影响。这样联合概率就可以拆解成如下的条件概率。
在这里插入图片描述

N-gram Model

先介绍一种,在深度学习出现前,经典且重要的语言模型构建方式:N-gram。
以4-gram为例,讨论never to late to后面出现wj的概率,可以用语料库中,too late to wj出现的次数除以too late to出现的次数。
需要统计所有出现的n-gram序列的频度。
在这里插入图片描述
N-gram的问题是:
1.N一般只会取2或者3:因为取过大的N,序列在语料库中出现的次数会变少,会导致统计结果稀疏。同时过大的N会导致存储的量增大。
2.不能反映词之间的相似性:N-gram是基于符号去做统计,所以对它而言,所有词都是独立的。
在这里插入图片描述

神经语言模型

神经语言模型是基于神经网络来学习词的分布式表示的语言模型。
在这里插入图片描述
假设当前要预测第t个词为词i的概率,考虑前面n个词:
1.将前面n个词表示成低维向量(从Word Embedding学到的低维稠密向量空间中找到)。
2.拼接上面的低维向量,形成更高的上下文向量。
3.经过非线性转换。
4.利用这个向量来预测下一个词是什么。
所有词的向量,以及整个预测的过程,都是基于神经网络的可调节可学习参数来完成。因此可以利用大规模数据来学习这些向量。
在这里插入图片描述

大模型的发展历程

在这里插入图片描述

为什么大模型非常重要

在语言理解,语言生成(如对话系统任务)上,预训练语言模型(PLMs)已经比人类表现要好了。
在这里插入图片描述
18年开始,PLMs的三个趋势是:更多的参数;更大规模的语料数据;更大规模的分布式计算。这些方式能显著提升模型性能。
在这里插入图片描述
GPT-3中,我们可以看到PLMs所涌现出来的人类知识。这说明文本知识会被捕捉到PLMs中,并且在大量参数中存储下来。所以渐渐地,大家会将PLMs作为解决NLP问题的基础工具。
在这里插入图片描述
另一方面,GPT-3有很强的零/小样本学习的能力。
在这里插入图片描述

大模型背后的范式

预训练阶段,PLMs会从大量无标注数据中进行学习,通过一些自监督任务,去做预训练,从中得到丰富的知识。
在具体应用时候,会引入一些任务相关数据,然后对模型进行微调。
最终保留任务相关的知识。最终得到一个解决具体任务的模型。

在这里插入图片描述

编程环境和GPU服务器介绍

相关知识,如Linux命令,Git命令等,需要自己了解。

http://www.ds6.com.cn/news/106125.html

相关文章:

  • 企业网站管理系统教程西安优化seo托管
  • 鞍山吧 百度贴吧商品标题seo是什么意思
  • 做巧克力的网站企业seo案例
  • 在线logo制作生成免费网站制作电商网站
  • 做会员卡的网站在线站长工具站长之家官网
  • 怎么介绍vue做的购物网站项目交换链接案例
  • 网站开发公司如何拓展业务seo软件优化工具软件
  • 胶南网站建设多少钱惠州百度推广优化排名
  • 广州做网站比较有名的公司百度指数下载手机版
  • 自己做网站怎么上传百度搜索最多的关键词
  • 浦江网站建设seo站长工具推广平台
  • wordpress登陆图标修改百度关键词seo排名软件
  • 电商网站开发环境怎么写产品网络推广方式
  • 网站空格 教程免费推广产品平台有哪些
  • 广州高端网站建设网络营销师证书
  • 中国建筑公司网站互联网app推广具体怎么做
  • 网站账户上的余额分录怎么做网络排名优化软件
  • 阿狸网站建设百度 竞价排名
  • 网站开发三剑客营销软文小短文
  • 郑州做网站好熊猫关键词工具
  • 找人做网站应该注意哪些百度一下你就知道官网
  • 建筑工程资质郑州技术支持seo
  • 兰州建网站国家认可的赚钱软件
  • 泰安手机网站建设电商网站有哪些
  • 榆林网站建设双滦区seo整站排名
  • 建筑劳务公司名字起名大全seo是什么公司
  • 如何用ftp登陆网站网站排名查询工具有哪些
  • 用家里网络做网站宁波seo快速优化公司
  • 做网站购买什么软件网页制作培训教程
  • 两学一做材料上哪个网站找福州seo推广外包