当前位置: 首页 > news >正文

wordpress好学保定seo网站推广

wordpress好学,保定seo网站推广,西安自助建站公司,平面设计师需要会什么软件评估数据 结构方面 需要清理:乱数据不需要清理:整洁数据 每列是一个变量每行是一个观察值每个单元格是一个值 内容方面 需要清理:脏数据 丢失数据重复数据不一致数据无效或错误数据 不需要清理:干净数据 # 获取整体信息 df.in…

评估数据

  • 结构方面
    • 需要清理:乱数据
    • 不需要清理:整洁数据
      • 每列是一个变量
      • 每行是一个观察值
      • 每个单元格是一个值
  • 内容方面
    • 需要清理:脏数据
      • 丢失数据
      • 重复数据
      • 不一致数据
      • 无效或错误数据
    • 不需要清理:干净数据
# 获取整体信息
df.info()
# 获取开头/结尾/随机数据来评估
df.head(10)
df.tail(10)
df.sample(10)
# 调整展示上限
pd.set_option("display.max_columns", 150)
pd.set_option("display.max_colwidth", 500)# 评估丢失数据
# 返回布尔值组成的Series或DataFrame
scores["考试2"].isnull()
df.isnull()
# 获取空缺值数量
scores["考试2"].isnull().sum()
df.isnull().sum()
# 提取丢失数据的行
scores[scores["考试2"].isnull()]# 评估重复数据
students["学号"].duplicated()
students.duplicated(subset=["学号","性别"])# 评估不一致数据
students["班级"].value_counts()# 评估无效/错误数据
# 排序
students["身高"].sort_values()
students.describe()

清洗数据

  • 结构方面:更改为整洁数据结构

  • 内容方面

    • 丢失数据
      • 人工填入缺失值
      • 不处理缺失值
      • 把有缺失值的行删除
      • 用例如平均数等填充代替缺失值
    • 重复数据:删除
    • 不一致数据:统一
    • 无效数据:删除或替换
    • 数据类型转换
  • 实际操作

# 重命名索引和列名(原变量不变,需要重新赋值或可选参数inplace=True
df1.rename(index={"2_":"2", "_5":"5", "6*":"6"})
df1.rename(columns={"2_":"2", "_5":"5", "6*":"6"})
df2.rename(index=某函数/方法)
df2.rename(columns=str.upper) # 大写
# 更多Series相关方法:https://pandas.pydata.org/docs/reference/api/pandas.Series.html
# 更多DataFrame相关方法:https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html# 重设索引
# 将列值作为索引
df3.set_index("Salesperson")
# 还原
df3.reset_index()# 对索引和列名重新排序(原变量不变,需要重新赋值或可选参数inplace=True
df4.sort_index()# 对数据进行转置
df1 = df1.T
# 对列进行拆分
df2[["人口", "面积"]] = df2["人口密度"].str.split("/", expand=True)
df2 = df2.drop("人口密度", axis=1)
# 把不同列合并成一列
df3["姓].str.cat(df3[""], sep="-")
# 把宽数据转换成长数据(列名变成列值)
df4 = pf.melt(df4, id_vars=['不变的列名'], var_name='列名所在列列名', value_name='原列值所在列列名')
# 对行进行拆分
df5.explode("课程列表")
# 删除行,删除列(原变量不变,需要重新赋值或可选参数inplace=True
df6.drop(2)
df6.drop(["列","lie"],axis=1)# 对整列缺失值进行填充(索引定位)
df1["国家"] = "中国"
# 对某个缺失值进行填充
df2.loc["003":"004", "销售额"] = 800
# 自动找到缺失值进行填充
df4["B"].fillna(df["B"].mean())
df4.fillna(0)
df4.fillna({'A': 0, 'B': 10}) # 不同列可指定替换值
# 删除存在缺失值的行(原变量不变,需要重新赋值或可选参数inplace=True
df5.dropna()
df5.dropna(subset=["工资"]) # 控制范围
# 删除重复数据(原变量不变,需要重新赋值或可选参数inplace=True
df6["姓名"].drop_duplicates()
df6.drop_duplicates(subset=['a','b'], keep='last') #同时重复,保留最后
# 对值进行替换(不一致数据)(原变量不变,需要重新赋值或可选参数inplace=True
df7.replace(["hnu", "湖大"], "湖南大学")
df7.replace("hnu": "湖南大学")
# 对值的类型进行转换
# 分类数据建议转换为category,有利于减小内存,让Pandas自动选用合适的统计方法或图表类型
s1=pd.Series(["1","2","3"])
s1.astype("category")

保存数据(覆盖原始数据)

df1.to_csv("cleaned_sales_data.csv")
# 读取时会将索引作为第一列,需要更改列名并将其重新设置为索引# 写入时忽略索引(索引无关键信息)
df1.to_csv("cleaned_sales_data2.csv", index=False)
http://www.ds6.com.cn/news/104780.html

相关文章:

  • 怎么做原创动漫视频网站网络推广公司加盟
  • 好网站网络服务商
  • 常州网站建设方案产品推广软文200字
  • wordpress提交工单莫停之科技windows优化大师
  • 山东省作风建设网站网络软文范文
  • 做动效的网站怎么做网站推广
  • 梦织做网站百度图片搜索引擎入口
  • wordpress安装幻灯片插件广州seo关键词
  • 摄影网页设计图片网站怎样优化关键词好
  • 服装设计公司属于什么行业类型轻松seo优化排名 快排
  • 一级a做美国片免费网站ping站长工具
  • b2b网站黄页88浙江网络科技有限公司
  • 做简历有什么网站营销型网站策划方案
  • 网站开发需要学seo研究中心
  • 国内网站要备案怎么优化一个网站关键词
  • html5网站开发实战sem竞价托管费用
  • 服务器建站教程营销软文广告
  • 水果网站模版成都纯手工seo
  • 做政府网站话术镇江网络
  • 学做网站论坛视频下载网络营销成功案例介绍
  • 杭州网站建设公司电话抖音推广运营公司
  • 做彩票网站需要什么服务器网络营销项目策划
  • 网站后台培训方案网站开发外包
  • 网站开发流行吗网站推广的方式有哪些
  • 视觉设计工资一般多少seo图片优化
  • 网站系统建设优化模型有哪些
  • 企业建设网站的主要作用手机google官网注册账号入口
  • 上饶金河湾做网站百度推广登录平台登录
  • 四川做网站设计公司价格缅甸最新新闻
  • wordpress汉化教程视频上海网站seo外包