当前位置: 首页 > news >正文

怎么做公司网站优化查看浏览过的历史记录百度

怎么做公司网站优化,查看浏览过的历史记录百度,门户系统登录,南昌网站建设讯息本篇博客为 上篇博客的 另一个实现版本,训练流程相同,所以只实现代码,感兴趣可以跳转看一下。 生成对抗网络—GAN(代码理解) http://t.csdnimg.cn/HDfLOhttp://t.csdnimg.cn/HDfLO 目录 一、GAN深度卷积实现 1. 模型…

        本篇博客为 上篇博客的 另一个实现版本,训练流程相同,所以只实现代码,感兴趣可以跳转看一下。

  生成对抗网络—GAN(代码+理解)

http://t.csdnimg.cn/HDfLOicon-default.png?t=N7T8http://t.csdnimg.cn/HDfLO


目录

一、GAN深度卷积实现

1. 模型结构

(1)生成器(Generator)

(2)判别器(Discriminator)

2. 代码实现

3. 运行结果展示

二、学习中产生的疑问,及文心一言回答

1. 模型初始化

2. 模型训练时

3. 优化器定义

4. 训练数据

5. 模型结构

(1)生成器        

(2)判别器


一、GAN深度卷积实现

1. 模型结构

(1)生成器(Generator)

(2)判别器(Discriminator)

2. 代码实现

import torch
import torch.nn as nn
import argparse
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torchvision import datasets
import numpy as npparser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=20, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)# 加载数据
dataloader = torch.utils.data.DataLoader(datasets.MNIST("./others/",train=False,download=False,transform=transforms.Compose([transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]),),batch_size=opt.batch_size,shuffle=True,
)def weights_init_normal(m):classname = m.__class__.__name__if classname.find("Conv") != -1:torch.nn.init.normal_(m.weight.data, 0.0, 0.02)elif classname.find("BatchNorm2d") != -1:torch.nn.init.normal_(m.weight.data, 1.0, 0.02) # 给定均值和标准差的正态分布N(mean,std)中生成值torch.nn.init.constant_(m.bias.data, 0.0)class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.init_size = opt.img_size // 4  # 原为28*28,现为32*32,两边各多了2self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))self.conv_blocks = nn.Sequential(nn.BatchNorm2d(128),    # 调整数据的分布,使其 更适合于 下一层的 激活函数或学习nn.Upsample(scale_factor=2),nn.Conv2d(128, 128, 3, stride=1, padding=1),nn.BatchNorm2d(128, 0.8),nn.LeakyReLU(0.2, inplace=True),nn.Upsample(scale_factor=2),nn.Conv2d(128, 64, 3, stride=1, padding=1),nn.BatchNorm2d(64, 0.8),nn.LeakyReLU(0.2, inplace=True),nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),nn.Tanh(),)def forward(self, z):out = self.l1(z)out = out.view(out.shape[0], 128, self.init_size, self.init_size)img = self.conv_blocks(out)return imgclass Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()def discriminator_block(in_filters, out_filters, bn=True):block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1),nn.LeakyReLU(0.2, inplace=True),nn.Dropout2d(0.25)]if bn:block.append(nn.BatchNorm2d(out_filters, 0.8))return blockself.model = nn.Sequential(*discriminator_block(opt.channels, 16, bn=False),*discriminator_block(16, 32),*discriminator_block(32, 64),*discriminator_block(64, 128),)# 下采样(图片进行 4次卷积操作,变为ds_size * ds_size尺寸大小)ds_size = opt.img_size // 2 ** 4self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1),nn.Sigmoid())def forward(self, img):out = self.model(img)out = out.view(out.shape[0], -1)validity = self.adv_layer(out)return validity# 实例化
generator = Generator()
discriminator = Discriminator()# 初始化参数
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)# 优化器
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))# 交叉熵损失函数
adversarial_loss = torch.nn.BCELoss()def gen_img_plot(model, epoch, text_input):prediction = np.squeeze(model(text_input).detach().cpu().numpy()[:16])plt.figure(figsize=(4, 4))for i in range(16):plt.subplot(4, 4, i + 1)plt.imshow((prediction[i] + 1) / 2)plt.axis('off')plt.show()# ----------
#  Training
# ----------
D_loss_ = []  # 记录训练过程中判别器的损失
G_loss_ = []  # 记录训练过程中生成器的损失
for epoch in range(opt.n_epochs):# 初始化损失值D_epoch_loss = 0G_epoch_loss = 0count = len(dataloader)  # 返回批次数for i, (imgs, _) in enumerate(dataloader):valid = torch.ones(imgs.shape[0], 1)fake = torch.zeros(imgs.shape[0], 1)# -----------------#  Train Generator# -----------------optimizer_G.zero_grad()z = torch.randn(imgs.shape[0], opt.latent_dim)gen_imgs = generator(z)g_loss = adversarial_loss(discriminator(gen_imgs), valid)g_loss.backward()optimizer_G.step()# ---------------------#  Train Discriminator# ---------------------optimizer_D.zero_grad()real_loss = adversarial_loss(discriminator(imgs), valid)fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)d_loss = (real_loss + fake_loss) / 2d_loss.backward()optimizer_D.step()print("[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item()))# batches_done = epoch * len(dataloader) + i# if batches_done % opt.sample_interval == 0:#     save_image(gen_imgs.data[:25], "others/images/%d.png" % batches_done, nrow=5, normalize=True)# 累计每一个批次的losswith torch.no_grad():D_epoch_loss += d_lossG_epoch_loss += g_loss# 求平均损失with torch.no_grad():D_epoch_loss /= countG_epoch_loss /= countD_loss_.append(D_epoch_loss.item())G_loss_.append(G_epoch_loss.item())text_input = torch.randn(opt.batch_size, opt.latent_dim)gen_img_plot(generator, epoch, text_input)x = [epoch + 1 for epoch in range(opt.n_epochs)]
plt.figure()
plt.plot(x, G_loss_, 'r')
plt.plot(x, D_loss_, 'b')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['G_loss','D_loss'])
plt.show()

3. 运行结果展示

二、学习中产生的疑问,及文心一言回答

1. 模型初始化

        函数 weights_init_normal 用于初始化 模型参数,为什么要 以 均值和标准差 的正态分布中采样的数 为标准?

2. 模型训练时

        这里“d_loss = (real_loss + fake_loss) / 2” 中的 “/ 2” 操作,在 实际训练中 有什么作用?

        由(real_loss + fake_loss) / 2的 得到 的 d_loss 与(real_loss+fake_loss)得到的 d_loss 进行 回溯,两者结果会 有什么不同吗?

3. 优化器定义

        设置 betas=(opt.b1, opt.b2) 有什么 实际的作用?通俗易懂的讲一下

        betas=(opt.b1, opt.b2) 是怎样 更新学习率的?

4. 训练数据

        这里我们用的data为 MNIST,为什么img_size设置为 32,不是 28?

5. 模型结构

(1)生成器        

        解释一下为什么是“Upsample, Conv2d, BatchNorm2d, LeakyReLU ”这种顺序?

(2)判别器

        模型的 基本 运算步骤是什么?其中为什么需要 “Dropout2d( p=0.25, inplace=False)”这一步?

        关于“ds_size” 和 “128 * ds_size ** 2”的实际意义?


                                后续更新 GAN的其他模型结构。

http://www.ds6.com.cn/news/101910.html

相关文章:

  • 美国做任务挣钱的网站seo优化方案策划书
  • 网站存在风险什么意思百度入口网站
  • 江门网站制作推广线上seo关键词优化软件工具
  • pc网站开发获取位置推广普通话的宣传语
  • 孟村网站建设军事新闻头条
  • 网站开发a — ajax深圳网站建设哪家好
  • 大连网站建设动态购物网站页面设计
  • 搭建公司内部网站站长工具排行榜
  • 如何自建网站做外贸seo推广培训资料
  • 泰州网站设计培训省好多会员app
  • 淮安营销型网站建设运营培训班学费大概多少
  • 如今做那些网站致富网站名查询网址
  • 做新闻微网站百度一下网页版
  • wordpress5.2.2下载余姚seo智能优化
  • 太原市做网站好的科技公司品牌营销策划公司
  • 宝塔网站建设优化网站seo公司
  • 网站开发和设计实训软文营销文章
  • 网站没有根目录百度推广客户端怎么登陆
  • 广州市建设集团网站首页百度一下官方下载安装
  • 在哪个网站订酒店做申根签证搜索引擎调价平台哪个好
  • 哪里找做鸭子的网站如何在网上推广产品
  • 领创科技网站开发宁波seo推广方式排名
  • php 用什么做网站服务器初学seo网站推广需要怎么做
  • 网站建设邮箱免费自助建站全国各大新闻网站投稿
  • 马尼拉做网站今日热点新闻事件及评论
  • 看网站用什么软件百度推广方式
  • 北京环评在那个网站上做网络推广有效果吗
  • 天津微网站建设怎么让关键词快速上首页
  • 不会技术怎么做公司网站seo代码优化
  • 客户做网站一定报价怎么办保定网站推广公司