当前位置: 首页 > news >正文

重庆舞台搭建招聘站长工具seo综合查询腾讯

重庆舞台搭建招聘,站长工具seo综合查询腾讯,在哪里可以学习做网站,企业网站的优化和推广方法题目内容 原题链接 给定一个长度为 n n n 的数组,将这个数组进行拆分成若干个连续子数组, 使得每个子数组的最大值减去最小值小于等于 s s s , 且每个子数组的长度大于等于 l e n len len 。 问最少可以拆分成多少个连续子数组&#xff0…

题目内容

原题链接

给定一个长度为 n n n 的数组,将这个数组进行拆分成若干个连续子数组,
使得每个子数组的最大值减去最小值小于等于 s s s
且每个子数组的长度大于等于 l e n len len

问最少可以拆分成多少个连续子数组,如果不可以,则输出 − 1 -1 1

数据范围

  • 1 ≤ n , l e n ≤ 1 0 5 1\leq n,len\leq 10^5 1n,len105
  • 0 ≤ s ≤ 1 0 9 0\leq s\leq 10^9 0s109
  • − 1 0 9 ≤ a i ≤ 1 0 9 -10^9\leq a_i\leq 10^9 109ai109

题解

状态定义
d p [ i ] dp[i] dp[i] 表示将前 i i i 个数可以拆分出的最少的连续子数组。

状态转移
d p [ i ] = min ⁡ { d p [ j ] } + 1 dp[i]= \min\{dp[j]\}+1 dp[i]=min{dp[j]}+1

这里需要满足如下两个条件:
1. max ⁡ { a [ j + 1 , ⋯ , i ] } − min ⁡ { a [ j + 1 , ⋯ , i ] } ≤ s 1. \max\{a[j+1,\cdots,i]\}-\min\{a[j+1,\cdots,i]\}\leq s 1.max{a[j+1,,i]}min{a[j+1,,i]}s
2. i − j + 1 ≥ l e n 2. i-j+1\geq len 2.ij+1len

暴力做法

直接枚举所有的 j j j

时间复杂度: O ( n 2 ) O(n^2) O(n2)

优化做法1

考虑如何加速找到所有合法的 j j j
j j j 越小,即 [ j + 1 , i ] [j+1,i] [j+1,i] 这个区间的最大值越大,最小值越小,那么就极值之差就越有可能大于等于 s s s

那么这部分就是满足二段性的,如此就可以二分。

右端点为 i i i ,二分左端点 j j j ,那么 [ j , i ] [j, i] [j,i] 的区间极值之差如果大于 s s s ,那么左端点应该更大,否则应该继续二分尝试减小左端点。

如此二分的时候应该快速找到区间极值,这部分用 R M Q RMQ RMQ 来解决。

我们最终二分出的左端点为 j j j ,那么需要找到区间 [ j − 1 , i − l e n ] [j-1, i-len] [j1,ilen] 中的 d p dp dp 最小值。这部分因为是动态区间求最值,线段树或者优先队列懒 pop 来解决。

时间复杂度: O ( n log ⁡ n ) O(n\log n) O(nlogn)

优化做法2

考虑到这里很多都是求区间的极值,而且对于每个右端点,其左端点一定是单调不减的,所以可以考虑双指针。

枚举右端点 r r r,然后移动左端点 l l l,使得区间最大值减去最小值小于等于 s s s

q m a x qmax qmax 是一个单调递减的队列,队头存储的是区间最大值
q m i n qmin qmin 是一个单调递增的队列,队头存储的是区间最小值

如此就可以 O ( 1 ) O(1) O(1) 快速查出区间极值。

此外,我们还需要知道最终得到左端点 l l l ,区间 [ l − 1 , r − l e n ] [l-1,r-len] [l1,rlen] d p dp dp 最小值。这部分同样可以用一个单调递增的队列来维护。

时间复杂度: O ( n ) O(n) O(n)

优化做法1代码一

#include <bits/stdc++.h>
using namespace std;const int N = 100010;
const int INF = 0x3f3f3f3f;
const int BIT = 17;int qmax[BIT][N];
int qmin[BIT][N];
int lg[N];
int a[N];
int n, s, len;
int dp[N];void init_rmq() {for (int i = 2; i <= n; ++i) lg[i] = lg[i >> 1] + 1;for (int j = 1; j <= n; ++j) qmax[0][j] = qmin[0][j] = a[j];for (int k = 1; k < BIT; ++k)for (int j = 1; j + (1 << k) - 1 <= n; ++j) {qmax[k][j] = max(qmax[k - 1][j], qmax[k - 1][j + (1 << (k - 1))]);qmin[k][j] = min(qmin[k - 1][j], qmin[k - 1][j + (1 << (k - 1))]);}
}int query_seg(int left, int right) {int bit = lg[right - left + 1];return max(qmax[bit][left], qmax[bit][right - (1 << bit) + 1]) - min(qmin[bit][left], qmin[bit][right - (1 << bit) + 1]);
};struct Node {int l, r;int val;
}tr[N << 2];void build(int u, int l, int r) {tr[u] = {l, r, INF};if (l == r) return;int mid = (l + r) >> 1;build(u << 1, l, mid);build(u << 1 | 1, mid + 1, r);
}int query(int u, int l, int r) {if (tr[u].l >= l && tr[u].r <= r) {return tr[u].val;}int mid = (tr[u].l + tr[u].r) >> 1;int ans = INF;if (l <= mid) ans = min(ans, query(u << 1, l, r));if (r > mid) ans = min(ans, query(u << 1 | 1, l, r));return ans;
}void modify(int u, int p, int x) {if (tr[u].l == tr[u].r) {tr[u].val = x;return;}int mid = (tr[u].l + tr[u].r) >> 1;if (p <= mid) modify(u << 1, p, x);else modify(u << 1 | 1, p, x);tr[u].val = min(tr[u << 1].val, tr[u << 1 | 1].val);
}int main()
{scanf("%d%d%d", &n, &s, &len);for (int i = 1; i <= n; ++i) scanf("%d", &a[i]);init_rmq();build(1, 0, n);// 考虑每个点 i 向左的最大值和最小值// 二分最短的,然后我需要知道这个区间里的最大值减最小值// dp[i] 表示前 i 个点需要拆分成的最少段for (int i = 1; i <= n; ++i) dp[i] = INF;dp[0] = 0;modify(1, 0, 0);for (int i = len; i <= n; ++i) {if (query_seg(i - len + 1, i) > s) continue;int left = 1, right = i - len + 1;while (left < right) {int mid = (left + right) >> 1;if (query_seg(mid, i) > s) left = mid + 1;else right = mid;}// 查 left - 1 到 i - len 的最小值dp[i] = min(dp[i], query(1, left - 1, i - len) + 1);// 单点最小值更新if (dp[i] < INF) {modify(1, i, dp[i]);}}printf("%d\n", dp[n] == INF ? -1 : dp[n]);return 0;
}

优化做法1代码二

#include <bits/stdc++.h>
using namespace std;typedef pair<int, int> PII;
const int N = 100010;
const int INF = 0x3f3f3f3f;
const int BIT = 17;int qmax[BIT][N];
int qmin[BIT][N];
int lg[N];
int a[N];
int n, s, len;
int dp[N];void init_rmq() {for (int i = 2; i <= n; ++i) lg[i] = lg[i >> 1] + 1;for (int j = 1; j <= n; ++j) qmax[0][j] = qmin[0][j] = a[j];for (int k = 1; k < BIT; ++k)for (int j = 1; j + (1 << k) - 1 <= n; ++j) {qmax[k][j] = max(qmax[k - 1][j], qmax[k - 1][j + (1 << (k - 1))]);qmin[k][j] = min(qmin[k - 1][j], qmin[k - 1][j + (1 << (k - 1))]);}
}int query_seg(int left, int right) {int bit = lg[right - left + 1];return max(qmax[bit][left], qmax[bit][right - (1 << bit) + 1]) - min(qmin[bit][left], qmin[bit][right - (1 << bit) + 1]);
};int main()
{scanf("%d%d%d", &n, &s, &len);for (int i = 1; i <= n; ++i) scanf("%d", &a[i]);init_rmq();// 考虑每个点 i 向左的最大值和最小值// 二分最短的,然后我需要知道这个区间里的最大值减最小值// dp[i] 表示前 i 个点需要拆分成的最少段for (int i = 1; i <= n; ++i) dp[i] = INF;dp[0] = 0;priority_queue<PII, vector<PII>, greater<PII>> heap;for (int i = len; i <= n; ++i) {if (i == 5) {int x = 1;}if (dp[i - len] < INF) {heap.emplace(dp[i - len], i - len);}if (query_seg(i - len + 1, i) > s) continue;int left = 1, right = i - len + 1;while (left < right) {int mid = (left + right) >> 1;if (query_seg(mid, i) > s) left = mid + 1;else right = mid;}// 查 left - 1 到 i - len 的最小值while (!heap.empty() && heap.top().second < left - 1) {heap.pop();}if (!heap.empty()) {dp[i] = heap.top().first + 1;}}printf("%d\n", dp[n] == INF ? -1 : dp[n]);return 0;
}

优化做法2代码

#include <bits/stdc++.h>
using namespace std;const int N = 100010;
const int INF = 0x3f3f3f3f;
int n, s, len;
int a[N];
int dp[N];
struct Queue {int q[N]{};int hh, tt;Queue(): hh(0), tt(-1) {}void push(int x) { q[++tt] = x; }void pop_back() { --tt; }void pop_front() { ++hh; }bool empty() const { return hh > tt; }int front() const { return q[hh]; }int back() const { return q[tt]; }
}qmax, qmin, qdp;int main()
{scanf("%d%d%d", &n, &s, &len);for (int i = 1; i <= n; ++i) scanf("%d", &a[i]);memset(dp, 0x3f, (n + 1) * sizeof(int));dp[0] = 0;for (int r = 1, l = 1; r <= n; ++r) {// 找到这个区间里的最小值while (!qmin.empty() && a[qmin.back()] >= a[r]) qmin.pop_back();qmin.push(r);// 找到这个区间里的最大值while (!qmax.empty() && a[qmax.back()] <= a[r]) qmax.pop_back();qmax.push(r);// 此时区间 [l, r] 里的最小值和最大值都已确定// 我们需要使得挪动左端点,直到区间 max - min <= s// 挪动左端点就意味着 qmax 和 qmin 需要进行移动,使得 qmax 和 qmin 的值都是在 [l, r] 之间while (!qmin.empty() && !qmax.empty() && a[qmax.front()] - a[qmin.front()] > s) {l += 1;while (!qmin.empty() && qmin.front() < l) qmin.pop_front();while (!qmax.empty() && qmax.front() < l) qmax.pop_front();}if (r >= len && dp[r - len] < INF) {while (!qdp.empty() && dp[qdp.back()] >= dp[r - len]) qdp.pop_back();qdp.push(r - len);}while (!qdp.empty() && qdp.front() < l - 1) qdp.pop_front();if (r - l + 1 >= len && !qdp.empty()) {dp[r] = dp[qdp.front()] + 1;}}printf("%d\n", dp[n] == INF ? -1 : dp[n]);return 0;
}
http://www.ds6.com.cn/news/10183.html

相关文章:

  • 日本网站服务器百度站长
  • 建筑网站官网河北seo基础教程
  • 中国建筑协会官网证件查询网站优化关键词
  • 学做婴儿衣服网站包头整站优化
  • 邢台建设企业网站商丘seo
  • 东营网站建设推广哪家好厦门seo优化多少钱
  • cms网站建设有多少条数据手机如何制作自己的网站
  • 网站不想被百度抓取百度官方优化软件
  • 做网站实训心得体会软文推广平台
  • 恒华大厦做网站公司2345网址导航官网下载
  • wordpress 5 开发厦门seo优化
  • 国外免费推广网站有哪些seo搜索引擎优化介绍
  • 最专业的房地产网站建设广告投放平台公司
  • 机器人网站建设网站推广策划书
  • 哪个网站查食品建设好最新推广方法
  • 课程建设网站产品推广方式
  • 青羊区网站建设公司线下推广方式有哪些
  • 深圳网络推广公司排名seo诊断服务
  • 做自己网站做站长杭州做百度推广的公司
  • 网站图片翻页效果如何做超级优化大师
  • 公司网页制作是无形资产吗厦门百度关键词seo收费
  • 门户网站开发jz190老铁seo外链工具
  • 长沙做网站seo公司网站推广怎么写
  • 网页设计与制作dw教程短视频关键词优化
  • 如何在百度上找网站2021年新闻摘抄
  • 软件二次开发什么意思引擎优化
  • 房产中介网站模板网站关键词快速排名工具
  • 电子工程专辑网站如何自己做一个软件
  • 用python做网站怎么赚钱推广平台有哪些渠道
  • 网站产品推广制作google搜索中文入口